23351 Madero,
Mission Viejo.
CA 92691. USA
Tel: $\quad+19498598800$
Fax: +19498599643
Email: sales@holtic.com
Web: www.holtic.com

HI-8596 3.3V ARINC Line Driver Demonstration Board

1. INTRODUCTION

The HI-8596 Demonstration Board allows the user to evaluate the different modes of operation of the HI-8596 ARINC 429 line driver.
The HI-8596 includes a dual polarity voltage doubler, allowing it to operate from a single +3.3 V supply using four external capacitors. The part also features high-impedance outputs (tri-state) when both data inputs are taken high, allowing multiple line drivers to be connected to a common bus.

2. DEMONSTRATION BOARD

The demonstration board can generate patterns that drive the HI-8596 in various different ways through a set of 3 switches. The table below describes how to generate signals in high or low speed, in static states of ARINC 429 One, Zero or Null or to hold the outputs in tri-state. With only a single +3.3 V source the $\mathrm{HI}-8596$ will generate the rail voltages which are used to produce ARINC 429 specified signals.
The HI-8596 Demonstration Board has test points to measure the +/-VDD2 generated supplies, the TXA/B outputs, along with the alternative AMPA/B outputs and a trigger signal for oscilloscope viewing. If an alternative input source to the TX0/TX1 pins is desired, jumpers 1 and 2 can be opened from the available pattern generator and a user designed generator may bypass that on the Demonstration Board.

Value	Part Number	Manufacturer
$0.1 \mu \mathrm{~F}$	C0805C104M5UACTU	Kemet
$47 \mu \mathrm{~F}$	EMK325B7476MM-T	Taiyo Yuden
$4.7 \mu \mathrm{~F}$	LMK212B7475KG-T	Taiyo Yuden

ESR: Fly cap < 0.5 ; Hold cap < 0.25Ω.
Material: Ceramic or Tantalum, preferably multilayer. No polarized capacitors
Dielectric: XR7
Rated voltage: $\geq 10 \mathrm{~V}$

Switch 1	Switch 2	Switch 3	Tx Outputs	Slope
High	Run	X	Dynamic high speed (see below)	$1.5 \mu \mathrm{~s}$
Low	Run	X	Dynamic low speed	$10 \mu \mathrm{~s}$
X	Null	X	TXA $=0 \mathrm{~V}, \mathrm{TXB}=0 \mathrm{~V}$	n / a
X	Static	One	TXA $=+5 \mathrm{~V}, \mathrm{TXB}=-5 \mathrm{~V}$	n / a
X	Static	Zero	TXA $=-5 \mathrm{~V}, \mathrm{TXB}=+5 \mathrm{~V}$	n / a
X	Static	Hi-Z	TXA $=$ TXB $=\mathrm{Hi}-\mathrm{Z}$	n / a

