HOLT:

INTEGRATED CIRCUITS

23351 Madero,

Mission Viejo, CA
92691. USA.

Tel: +1 949 859 8800
Fax: + 1949 859 9643
Email: sales@holtic.com
Web: www.holtic.com

HI-3593 ARINC 429 3.3V Dual Receiver,
Single Transmitter with SPI

Application Note AN-161
June 13, 2012

S99y

1
I
|
|

YT

es

{Jng

Qg

SETITTL

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

INTRODUCTION

This application note provides more detail on the HI-3593 demo software provided in the Holt HI-3593

ARINC 429 Evaluation Kit. The main sections of this application note are:

e Demo software overview

e Demo Project setup with Freescale CodeWarrior.

A Quick Start Guide and a User’s Guide for HI-3593 evaluation kit can be found on the CD-ROM. Use
these guides to become more familiar with the board setup and operation of the demo software.

Evaluation Board Block Diagram

+3,.3V

USB Debug Port

RS-232 Console

LEDs (10) <

User Push

Button

Switches (4)

RESET Button ——————————— 9

MC9S12XD
16 Bit MCU

Single Supply
+3.3V

SPI (4)

Transmitter

ARINC TX BUS
ARINC RX BUS

Dip SWs
(4)

Dip SWs (6)

R1INT, R2INT, MB1-1, MB2-1 HOLT
: : : HI-3593
MR > Receiver-1
A J DIS/Is Receiver-2
osC Converter
Expansion
Headers
(2x14) x 2

ARINC RX BUS

AN-161 Rev. A

HOLT INTEGRATED CIRCUITS

Demo software overview

This overview flow chart shows the demo program at a glance.

Initilize TimerO periodic interrupt 100us
Display program revision on LEDs

Display header message on the serial console
Generate a hardware reset to the HI-3593

Initialize GPIOs
GPIO interrupts

Turn off all LEDs

Read Option Switches
Read Mode switches

Yes
Test Mode?

Test Mode

Transmit
Receive w/
Labels

Yes

Transmit
Receive w/
Labels

Transmit
Receive w/
Labels selftes

Yes

Transmit
Receive w/
Labels selftest

HI3593
Explorer

HI3593
Explorer

HI3593
Explorer
selftest

Yes

HI3593
Explorer selftest

Serial
Commands?

Serial Commands

AN-161 Rev. A

HOLT INTEGRATED CIRCUITS

The program enters the desired mode selected by the mode switches. To restart into a different mode,
reconfigure the mode switches and reset the board.

MCU Clock and SPI Frequencies
The Freescale MC9S12XDT512 (MCU) on the main board uses a 4MHz crystal for operation and the built-
in PLL multiplies this by 20 to achieve an 80MHz system clock. This system clock is divided by two for a

40MHz Bus Clock which is used internally for the MCU peripherals.

The PLL is programmed to multiply by 20 by this line of code in the Peripherals.c module:

SYNR = 9; // 80Mhz PLL system clock

The SPI frequency is set by this line of code in the Peripherals.c module:
SPIOBR = SPI1_5MHZ; // SP1 CLK = 5MHz (see “Peripherals.c” for other

// rates)

The maximum SPI frequency for the HI-3593 is 10MHz.

Timing and Delay Functions

Timer_ISR Delay100us(delay)

Reload for next interrupt '
Decrement g_count100us tick G_count100us=delay;
Y <
Yes Flash LED7 b4
1 second If g_ledFlashBool
—>
handler? 9
imeout delay

finished?
No

N
4

return

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

4

These functions provide the basic timing for the program. The Delay100us() can be used anywhere an
accurate delay is needed in the program .

The global g_count100us variable is decremented at the 100us timer rate. This variable is used by a
general delay function which can be called with a specified number of delay intervals. The g_count100us
variable is a 16-bit integer so the delay ranges from 100us to 6.5536 seconds.

/) — e
// General timer tick 100us for delays

void DelaylOOus(unsigned int delay){
g_countl00us=delay;
while(g_countl00us);

}

A number of predefined constants are defined which can be used by calling the function with these

constants.
#define K_1MS 10 // 1lms
#define K_10MS 100 // 10ms
#define K_100MS 1000 // 100ms
#define K_1SEC 10000 // 1 second

Usage: DelaylO0Ous(K_1SEC); // delay for one second

A one second interrupt handler in the TIMER_ISR is provided. Any code placed here automatically
executes every second.

if(Tcountl00us)
{ // 1 second scheduler
countlOOus = K _1SEC;
if(ON==g_ledFlashBool) // Flash the LED7 if enabled
LED7 ~= TOGGLE; // Alive 1 second blink
}

GPIO interrupt Handlers

An interrupt handler manages most of the interrupt pins on the 3593.
interrupt 56 void PORTP_ISR(void)

There are reserved interrupt handlers for 3593 interrupt output pins R1INT, R2INT, MB1-1 and MB2-1
already implemented in the function. User code can be implemented in these handlers to manage these
interrupts.

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

CAUTION: if code added to the interrupt handlers accesses the SPI interface, then any SPIl access in the
foreground code must be made anatomic by first disabling interrupts then re-enabling interrupts after
the SPl is accessed. Failure to protect foreground SPI access will most likely cause corrupted data on the
SPlinterface. There are some test instructions in the handlers which pulse the PP4 MCU pin (MISO2)
J7-1 on the main board a number of times as a debugging tool. By viewing these pulses on an
oscilloscope, the interrupt handler can be identified. This test code can be removed.

PortP_ISR

g

Set PP4 High
Yes
Set PP4 0,1
Pulse PP4 the number of times
No specified to identify the interrupt
< handler in process. This is just
a debugging tool and can be
removed by the user.
Yes
Set PP40,1,01
No
Yes
Set PP40,1,01,0,1
No
?
Yes
MB1-1 ——» SetPP40,1,01,0,1,1,0
No
A
Set PP4 Low
AN-161 Rev. A HOLT INTEGRATED CIRCUITS

6

SPI Driver Functions

These three primitive SPI functions make up the basic read and write functions to access the SPI

interface of the 3593. There are slightly more complicated functions to perform multi-byte reads or

writes which are basically derivatives of these three simpler functions. All 3593 SPI driver functions are
included in the 3593Driver.c module and its 3593Driver.h header file. The MCU /SS pin is connected to

the 3593 /CS pin.

W_Command(cmd)

A
Reconfigure /SS as GPIO
Set /SS low

A

Clear SPI status reg
Load SPI data reg with cmd

Wait for
transmit
ompletion?

Yes

Clear SPI status reg
Load SPI data reg with cmd

return

R_Register(char)

Reconfigure /SS as GPIO
Set /SS low

v

Transmit the Opcode

Wait for
transmit
ompletion?

Yes

Transmit dummy byte to
receive data

Received byte?

Yes

\ 4

No

Clear SPI status reg
Load SPI data reg with cmd

4

Return R_Reg

(W_CommandVaIue(cmd, value)>

4

Reconfigure /SS as GPIO
Set /SS low

v

Transmit the cmd Opcode

&

Y

Wait for
transmit —
complete

Yes
h 4

Transmit the value

No
Transmit
complete?

Yes

v

Clear SPI status reg
Load SPI data reg with cmd

il

Return

AN-161 Rev. A

HOLT INTEGRATED CIRCUITS

Special handling of the /SS SPI signal:

All 3593 SPI Op-Codes require the /CS to remain low for the complete duration of the data transfer
including multi-byte reads and writes. Refer to figures 6 and 7 of the data sheet for timing diagram
examples.

To achieve this, the default SPI slave select line /SS in the Freescale MCU must be reconfigured as a GPIO
and controlled by code in the function. This technique is common for devices requiring the /CS line to
remain low during multi-byte transfers. The first positive SCK edge must occur after /CS is asserted low;
the last falling SCK edge must occur before the /CS is negated high as shown in the following diagram:

s W[T T LTI

Op-Code Byte Data Byte 0 Data Byte 1

High Z

SO

= | |

There are functions that read a single byte from the 3593 SPI port, write a command to the 3593 SPI
port and a few others which read or write a command plus a multiple number of bytes. For example the
function below is the basic function to write out a command plus one byte of data to the 3593 SPI port.

// Write SPI Command with a Value to HI-3593
void W_CommandValue (uint8 cmd, uint8 value){
uint8 dummy;

SPIOCR1 = SPIOCR1 & ~SPIOCR1_SSOE_MASK; // disable auto /SS output, reset /SS Output
SPIOCR2 = SPIOCR2 & ~SPIOCR2_MODFEN_MASK; // disable auto /SS output, reset SP10 Mode

SPI0_nSS = 0; // assert the SPI0 /SS strobe

dummy = SPIOSR; // clear SPI status register

SPIODR = cmd; // SP1 command

while (ISPIOSR_SPIF);

dummy = SPIODR; // read Rx data in Data Reg to reset SPIF
dummy = SPIOSR; // clear SPI status register

SPIODR = value; // Reset values

while (ISPIOSR_SPIF);

dummy = SPIODR; // read Rx data in Data Reg to reset SPIF
SP10_nSS = 1; // negate the SPI0 /SS strobe

SPIOCR1 = SPIOCR1 | SPIOCR1_SSOE_MASK; // enable auto /SS output, set /SS Output Enable
SPI0OCR2 = SPIOCR2 | SPI0OCR2_MODFEN_MASK; // enable auto /SS output, set SPI0 Mode Default

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

8

This function is used to transmit a command byte followed by four data bytes to write one ARINC
message to the FIFO.

Y A ..

// Transmits the Message Command and data contained in the passed array pointer

// Transmit the OxOC Opcode command + 4 bytes of
// ARINC data per Figure 1, pg 8 of the data sheet

void TransmitCommandAndData(uint8 cmd, uint8 *TXBuffer)
uint8 static ByteCount,dummy,transmitCount;
SPI10CR1 SPIOCR1 & ~SPIOCR1_SSOE_MASK; // disable auto /SS output,reset /SS Output enable

SPI0CR2 SPIOCR2 & ~SPIOCR2_MODFEN_MASK; // disable auto /SS output, reset SPI0 Mode Fault
SPI0_nSS = 0; // assert the SPI0 /SS strobe

transmitCount=4; // Standard messages are 4 bytes if writing PL Match registers
// send only 3 bytes
if(cmd==W_PL1Match |]] cmd==W_PL2Match)
transmitCount--;

dummy = txrx8bits(cmd, 1); // Transmit the whole message, ignore return values
// Transmit command=0x0C + 4 bytes
for(ByteCount=0; ByteCount< transmitCount; ByteCount++)

// Transmit the whole message, ignore return values
dummy = txrx8bits(TXBuffer[ByteCount], 1);

}
SP10_nSS 1; // negate the SPI0 /SS strobe
SPIOCR1 |= SPIOCR1_SPE_MASK|SPI0CR1_SSOE MASK;
SPIOCR2 |= SP10CR2_MODFEN_MASK;

}

This example shows a very simple SPI driver function which issues one Opcode then
Reads back one byte. This is used for fetching single byte status’ from the SPI.

/>
/ Read HI-3110 Register Read Function
Argument(s): Register to read

Return: 8-bit Register Value
*/

unsigned char R_Register (char Reg) {
unsigned char R_Reg;

SPIOCR1 = SPIOCR1 & ~SPIOCR1_SSOE_MASK; // disable auto /SS output, reset /SS Output Enable
SPIOCR2 = SPIOCR2 & ~SPIOCR2_MODFEN_MASK; // disable auto /SS output, reset SPI0 Mode Fault
SPI0_nSS = 0; // assert the SPI0 /SS strobe
R_Reg = txrx8bits(Reg,1); // send op code (ignore returned data byte)
R_Reg = txrx8bits(0x00,1); // send dummy data / receive Status Reg byte
SPI0_nSS = 1; // negate the SPI0 /SS strobe
SPIOCR1 = SPIOCR1 | SPI0OCR1_SSOE_MASK; // enable auto /SS output, set /SS Output Enable
SPIOCR2 = SPIOCR2 | SPIOCR2_MODFEN_MASK; // enable auto /SS output, set SPI0 Mode Fault
return R_Reg;

b

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

9

The Init3593() function initializes the 3593 by first issuing a SPI master reset then initializing the ACLK
divisor to divide the clock input by four. The ACLK oscillator module on the daughter card is 4MHz so
this generates a 1MHz clock required by the 3593 needed to meet ARINC timings. Finally, the transmit
status register (TSR) is fetched to check for 0x01 which is the expected value after a reset. If the calling
function does not receive this expected value, the program turns on the red LED, transmits an error
message on the console and enters a dead loop.

/)
// Initialize the HI-3593

uint8 Init3593(uint8 AclkDiv, uint8 tmode, uint8 selftest, uint8 arate, uint8 tflip)
{

unsigned char cmd=0;

W_Command (RESETCMD) ; // Reset the HI-3593
W_CommandValue(DivReg, AclkDiv); // ACLK div/4 divisor

cmd = arate;

cmd |= selftest << 4;

cmd |= tmode << 5;

cmd |= tflip << 6; // TFLIP on

W_CommandValue(TCR, cmd); // Program the Transmit Control Register
return R_Register (R_TSR);

}

See the 3593Driver.h header file for the options available in the define statements.
Uart.c Serial Port (RS-232)

The drivers to support the serial port (Console) are contained in this module. There are some function
drivers to allow messages to be sent and received on the UART. This is useful to log status or data
messages on HyperTerminal or any other terminal program. It currently uses polling to determine when
the data receive or transmit registers can be read or written.

GPI and GP2

These two pins on the main board are renamed as MB1-1 and MB2-1 respectively. They will be low most
of the time for this demo, so both of these LEDs, LED10 and LED11 will be on most of the time.

LEDs LED1-LEDS

These LEDs are controlled by a function in the program. LED1-LED4s and LEDS8 are low true logic and
LED5-LED7s are high true logic. Using this support function allows a universal way to turn the LEDs on
and off from the program. The Freescale MC9S12DT part uses the pins PE5, PE6, PE7 for configuration
sense pins during reset, so the logic on these three pins need to be reversed so the MCU sees a low at
reset time.

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

10

// ————— -
// Control LED1 - LEDS8

// ledNumber: LED_1,LED 2,LED 3,LED 4....LED 8 [1-8]

// OnOff: 1=0ON, O=O0FF

void LED _CTL(uint8 ledNumber, uint8 OnOff){
#iT NEWBOARD
if(ledNumber>4 && ledNumber<8)// LEDs 5-7 have reversed HW logic so invert

these 3
#else
if(ledNumber>4) // 0Old board.
#endif
OnOff = ~OnOff;
switch (ledNumber){
case 1: LED1=OnOff; break;
case 2: LED2=0OnOff; break;
case 3 LED3=0OnOfFf; break;
case 4 LED4=0nOff; break;
case 5: LED5=0OnOff; break;
case 6: LED6=0OnOff; break;
case 7: LED7=OnOff; break;
case 8: LED8=0OnOff; break;
default: break;
}
T
Usage examples:
LED _CTL(LED_1,0FF); // turns off LED1
LED CTL(LED 1,0N); // turns on LED1

The following two flow-charts illustrate the program flow for the two main demo modes.

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

11

Initialize Local Variable
Display mode console header

SELF-TEST?

GansmitReceiveWithLabels_Mode(SELFTES'D

Set SELF-TEST

No

<

4

Display console with status of dip
switch settings (Bitrate, TX parity)

Initialize the 3593

Failed to init?

<

Turn on red LED
Display error on
console
Dead Loop

4

Init 256 labels for
both receivers.
Fetch sw setting
for Rec1/Rec2
parity checking.

Init the Priority
Labels

4

Display the list of
button commands.
Display the
console
commands help.
Turn off the LED7
flasher.

Flow-chart of Mode-1 (Transmit Messages with Labels)

.

4

Get Console character if avail.

W-1 or space

Pause and display
status and control

registers
"
bar pressed? Wait for SW-4
resumed.
No
Y
Yes Pause.
Wait for SW-4
272 —
SW-2% pressed to
resume.
No
Y
Yes .
Pause and display
.37 —
SW-37 label memory.
No
<
Y
Transmitter Yes
FIFO Full?
No
Y
Yes
Console Execute console
command —P cmd.
received? Delay 1 second.
No

Y

Load the TX FIFO to transmit one
message in the transmit buffer
Update LED1-3 to show nibble data.
Increment the current message value.

4

Reload the transmit buffer with next message.

Fetch any messages on receiver-1 or receivel
Display on the console.

r-2.

AN-161 Rev. A

HOLT INTEGRATED CIRCUITS

12

Flow-chart of Mode- 3 (HI3593Explorer)

<HI3593Exp|0rer(SELFTEST)>

Initialize Local Variable
Display mode console header

SELF-TEST?

Set SELF-TEST

<

A

Display console with status of dip
switch settings (Bitrate, TX parity)

y
Initialize the 3593

Y

Yes
Failed to init? >—————

No

Turn on red LED
Display error on
console
Dead Loop

<

Init 256 labels for
both receivers.
Fetch sw setting
for Recl/Rec2
parity checking.

L

Init the Priority
Labels

4
Display the list of
button commands.
Display the
console

>
<

A

Get Console character if avail.

W-1 or space

Pause and display
status and control

registers
5
bar pressed? Wait for SW-4
No resumed.
«]
Yes Pause and display
label memory.
No

A

Transmitter ves

FIFO Full?

Console Yes Execute console cmds
command P,T,R,Sand H
received?

<
Yes M command,
Transmit
No
Yes
Transmit
No

commands help. i Yes ncrement
Turn off the LED7 (increment message then
flasher. message) Transmit
No
¥
Fetch all Received
messages, store in array,
display on the console.
\
AN-161 Rev. A HOLT INTEGRATED CIRCUITS

13

HI-3593 demo Codewarrior Software Project

The software project is built with Freescale’s CodeWarrior version 5.9.0 using the free limited 32K
version. The current code size of the demo is approximately 16K. The main functions are in main.c and
the low level HI-3593 drivers are in the 3593Driver.c file. The software project “HI-3593 Demo” will
normally be distributed in a zip file on a CD-ROM with the same name. To develop, debug and
download this software into the board a PE Micro “USB Multilink Interface” debug cable is necessary.
It is not provided in this kit. To purchase this cable, go to the PE Micro website or purchase it from Digi-
Key. See the links at the end of this document.

Project Files

Source Files
main.c Main code
3593Driver.C SPI low-level drivers for the HI-3593
Peripherals.c GPIO, PLL frequency setup and SPI configuration
BoardTest.c Board Test functions
Uart.c Low-level UART drivers
datapage.c Freescale IDE support file
Include Files
Main.h
3593Driver.h HI-3593 header

Peripherals.h
BoardTest.H

Uart.h

Common.h Common defines for the project

Derivative.h Freescale IDE support file

Mc9s12xdt512.h Freescale IDE target part support file
AN-161 Rev. A HOLT INTEGRATED CIRCUITS

14

CodeWarrior and Software Project Setup:

1. Download and install the CodeWarrior IDE from the Freescale website. The download links are
provided below.

2. Unzip the HI-3593 zip file into the directory you plan to use for your project.

3. Navigate to the HI-3593 project folder and double click the HI-3593 Demo.mcp project file to
launch this project with CodeWarrior. The IDE should open with the project files on the left side
of the window.

4. Click Make from the Project menu to rebuild the project. The project should build without
errors. You may receive a dead assignment warning if for example some defines are set to a zero
value.

5. Install the PE Micro USB Multilink Interface cable per the instructions.

6. Plug the USB Multilink 6-pin debug cable into the J9 debug connector and power up the board
with 3.3V.

7. Download the program by clicking Debug from the Project menu. The first time you download
you may need to configure the debugger for the USB Multilink cable. After downloading is
complete the debugger window should be displayed with the first line in main.c highlighted.
Press the green arrow button to run the program. Since the program has been loaded you can
power down the board and re power the board and the program should run automatically
without the debugger.

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

15

Holt HI-3593 project loaded with CodeWarrior 5.9.0

Freescale CodeWarrior - [m

EEile Edit Wiew Search Project Processor Expert Device Initislization ‘indow Help - 8 X
i RN AN ECRsERER
EE {} - M.~ [- o - Path |C\Documents and Settings\willr\My Documents'HI-3593 Dema Code'HI-3533 Dema 1_0\Sources\main.c 2
HI-3593 D 1.0,]
il o Hain.c o
[Pt ik e e <G B % B & % Holt HI-3593 Demonstration Program =
*
Fies | Link Order | Tergets | * This file demonstrates a sinple ANSI C program structure for —]
* the initializing and using a Holt HI-3593 devics
¢ File Code | Data ¥ |- *
= E350uoms 65 BA1 - - y Tool: Codewarrior 5.9.0 (build 2836)
6263 797 « =
peripherak.c W 0. : Hem RIACl TR
BoardTesc 272 0. * THE SOFTWARE IS FROVIDED "AS IS', WITHOUT VARRANTY OF ANY KIND,
Uattc 427 0. * EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO VARRANTIES
datapage.o 545 0« = = OF MERCHANTABILITY, FITNESS FOR A PARTICULAR FURPOSE AND
B33 iivere 57 T4 * HONINFRINGEMENT.
1 & Inchudes 0 0o * IN HO EVENT SHALL HOLT, INC BE LIABLE FOR ANY CLATH, DAMAGES
mainh i 0= * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
common.h i 0 = = OTHERVISE, ARISING FROM. OUT OF OR IN CONNECTION WITH THE
dervaliveh 0 0= * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE
meds ! ZedtG1 20 i 0 o= =
ot b 0 o= = Copyright (C) 2009 — 2010 by HOLT, Iac
BoardTostH 3 0 = ® ALl Rights Reserved
it g oo * Revision 1 0 First releass 2/11,2011 S
333 Diiverh 0 0 =
(2 Froject Settings 4 § e = y
= (3 Libs 7520 57 e
S
You may see conpiler warning like these and they are consider normal
Warning : C12056: SP debug info incorrect becsuse of optimization or inline assembler
*
#define WEWBOARD 1 #¢ 0= ald board
#define SW_REVISION 0x10 ~/ Softwars Revision to display on the LEDs and conscle
s¢ format [Revision. Sub revision] for eg. 0xl0 = Rev 1.0
#include "hidef b’
#include "derivative h* % derivative-specific definitions %/
#include <string.h>»
#include "main.h’
#include "3593Driver h*
#include 'BoardTest. h*
#include "Uart.h'
#include "commen.h
#include <stdio h> /4 to get sprintf function
s/ % Global Variables and arrays *
uint® Debughrray[16]; -/ Global array for 3110 status registers
unsigned char o REBuffer[64][4] 2/ [# of bufiers][1l6 bytes]
unsigned char HessageCount:
s T T char DebughrrayStrings[]1[25] ={ s Status register dump nessags headers .
< 2] Une17 o724l | o

Freescale MC9S12XDT512xxx Development Tools

The Freescale microcontroller data sheet and other documentation can be found at this link:

http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=S12XD&tid=16bhp

If these links become out of date go to: http://www.freescale.com/

and search for information on “S12XD: 16-Bit Automotive Microcontroller”.

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

16

A Free 32K limited version of the Code Warrior IDE from Freescale is available:

http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=CW-HCS12X&fsrch=1

The US Multilink debugger cable used for this project is:

http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=USBMULTILINKBDM&parentCod
e=512XD&fpsp=1

http://search.digikey.com/scripts/DkSearch/dksus.dl[?Detail&name=USBMULTILINKBDME-ND

References:

http://www.holtic.com/

AN-161 Rev. A HOLT INTEGRATED CIRCUITS

17

REVISION HISTORY

Revision Date Description of Change
AN-161, Rev. New | 2-11-10 Initial Release

AN-161, Rev. A 6-13-12 Update board photo
AN-161 Rev. A HOLT INTEGRATED CIRCUITS

18

