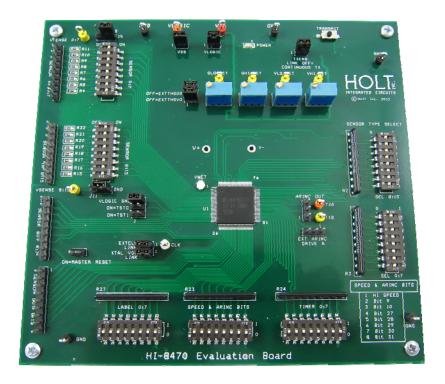


23351 Madero, Mission Viejo, CA 92691. USA.

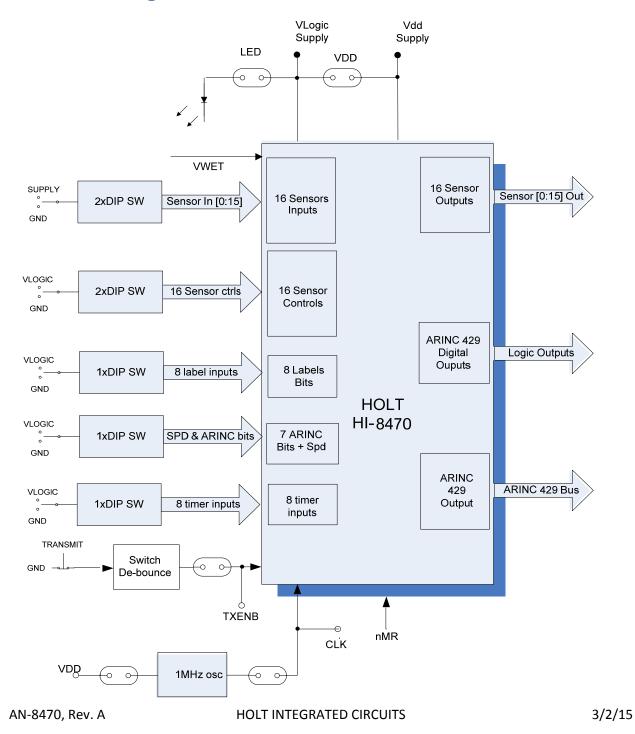

Tel: +1 949 859 8800
Fax: +1 949 859 9643
Email: sales@holtic.com
Web: www.holtic.com

# HI-8470 16 Sensor Array with ARINC 429 Output, Ground/Open or Supply/Open Sensors Evaluation Board

User Guide March 2, 2015

#### **INTRODUCTION**

The Holt HI-8470 Evaluation Board demonstrates features of the HI-8470 16 Sensor to ARINC 429 output IC. The board and the HI-8470 can be run from a single 3.3V+/- 5% supply voltage. The device has preset internal sensor thresholds, external thresholds can also be set with board-mounted potentiometers. The HI-8470 and EVM (Evaluation Module) require no software for control; all functions are set by hardware switches. DIP switches configure the device and data inputs. The EVM is shown in the picture below:




This guide summarizes how to get set up and running quickly.

#### **KIT CONTENTS**

- This User Guide
- HI-8470 Evaluation Board

# **Board Block Diagram**



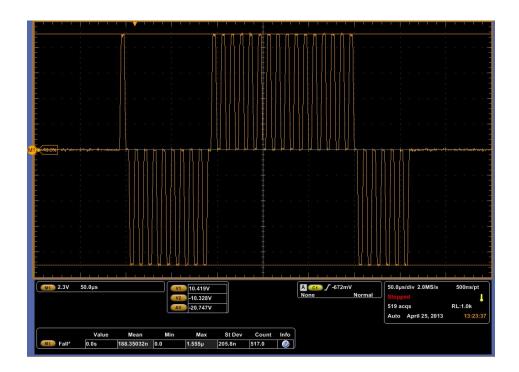
#### **Jumper Functions**

| JUMPER       | DEFAULT | DESCRIPTION                                                                                                                                                                |  |
|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| VLOGIC       | ON      | Link for VLOGIC supply to the LED                                                                                                                                          |  |
| VDD          | ON      | Link for VDD supply current (this supplies the HI-8470 converter for the ARINC 429 outputs)                                                                                |  |
| XTAL VDD     | ON      | Supplies 3.3V to the 1MHz crystal oscillator                                                                                                                               |  |
| EXTCLK       | ON      | To use external clock, disconnect link and apply Vlogic level clock to the CLK test point                                                                                  |  |
| MASTER RESET | OFF     | In place, this holds HI-8470 in reset                                                                                                                                      |  |
| TXENB        | ON      | In place; push button 'TRANSMIT' is pressed to transmit. For continuous transmit, remove the link.                                                                         |  |
| EXTTHSOG     | ON      | When not in place, the external GLO_SET and GHI_SET potentiometers set the GND/Open thresholds. With jumper in place, the device uses internal thresholds.                 |  |
| EXTTHSVO     | ON      | When not in place, the external VLO_SET and VHI_SET potentiometers set the Supply/Open thresholds. With jumper in place, the device uses internal thresholds.              |  |
| J5           | GND     | Sensor input switch 0:7 source; GND when switches are 'ON'. In non-GND position, the voltage on the VSENSE 0:7 test point is applied, for the switches in 'ON' position.   |  |
| J11          | GND     | Sensor input switch 8:15 source; GND when switches are 'ON'. In non-GND position, the voltage on the VSENSE 8:15 test point is applied, for switches in the 'ON' position. |  |
| TST0         | OFF     | When in place, the sensor inputs are all set to Low, and results in Highs at the sensor outputs.                                                                           |  |
| TST1         | OFF     | When in place, the sensor inputs are all set to High, and results in Lows at the sensor outputs. With TST1 and TST0 in place, sensor inputs are alternately 1,0            |  |

#### **Switch Functions**

| SWITCH         | DEFAULT        | DESCRIPTION                                        |  |
|----------------|----------------|----------------------------------------------------|--|
| LABEL 0:7      | OFF            | ARINC 429 label bits 0:7.                          |  |
|                |                | ON = '1'                                           |  |
| SPEED &        | SPEED = ON     | ARINC 429 speed and ARINC 429 bits 9, 10, & 27:31. |  |
| ARINC BITS     | ARINC =<br>OFF | ON = '1' (see table on board for positions)        |  |
| TIMER 0:7      | OFF            | Sets ARINC 429 message transmission timer.         |  |
|                |                | ON = '1'                                           |  |
| SEL 0:7        | OFF            | Sets sensor type for SI 0:7.                       |  |
|                |                | OFF = GND/Open                                     |  |
|                |                | ON = Supply/Open                                   |  |
| SEL 8:15       | OFF            | Sets sensor type for SI 8:15.                      |  |
|                |                | OFF = GND/Open                                     |  |
|                |                | ON = Supply/Open                                   |  |
| SENSOR         | ON             | Sets state of sensor inputs 0:7 stimuli.           |  |
| 0:7            |                | ON corresponds to GND or Supply.                   |  |
|                |                | OFF corresponds to Open state.                     |  |
| SENSOR<br>8:15 | ON             | As above, sets state of sensor inputs 8:15.        |  |
|                |                |                                                    |  |

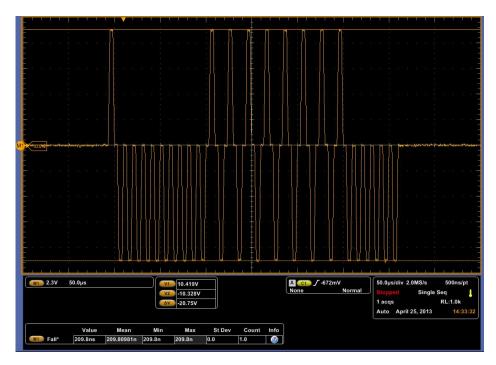
#### **Connector Functions**


| Connector  | PIN           | DESCRIPTION                            |
|------------|---------------|----------------------------------------|
| SENSOR IN  | 1 to 8        | Sensor inputs; Sensor 0:7 → Pins 1:8   |
| 0:7        | 9             | GND                                    |
| SENSOR IN  | 1 to 8        | Sensor inputs; Sensor 8:15 → Pins 1:8  |
| 8:15 9 GND | GND           |                                        |
| SENSOR     | 1 to 8        | Sensor outputs; Sensor 0:7 → Pins 1:8  |
| OUT 0:7    | OUT 0:7 9 GND | GND                                    |
| SENSOR     | 1 to 8        | Sensor outputs; Sensor 8:15 → Pins 1:8 |
| OUT 8:15   | 9             | GND                                    |

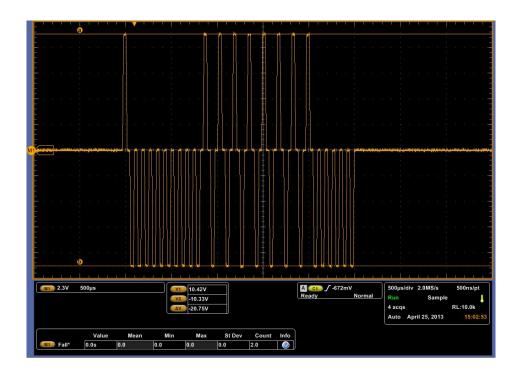
# **Board Set Up**

- 1. Make sure the link and switch positions are as listed in the tables above. Connect a 3.3V supply to the Vlogic test point. The VDD link connects power from VLogic to the HI-8470 VDD pin, which supplies the internal converter. The Vlogic jumper supplies only the LED.
- 2. To measure the device's Vlogic supply current; remove the Vlogic GND jumper and connect an ammeter across the jumper pins. This measures only the device current and not the other circuitry on the board. To measure Vdd current, remove the Vdd jumper and connect the ammeter across the jumper pins. Remove the XTAL VDD link; the current measured will be for the device 'unclocked'. To measure the device clocked current consumption, an external 1MHz clock should be used, connected to the CLK test point, after removing the EXTCLK link.

#### **ARINC 429 Output Testing**


- 1. The device transmits the sensor data to the ARINC 429 output when the TXENB is switched high. To generate just one ARINC 429 word, press the Transmit button. To enable continuous ARINC 429 transmission, remove the TXENB link. Before testing ensure the switches and links are in the default states shown in previous tables, then set Label Switch #8 to a '1' and Timer Switch #1 to '1'.
- 2. Enable continuous ARINC 429 transmission by removing the TXENB link. Connect an oscilloscope to the ARINC 429 outputs. For best results, use differential mode. Jumper TSTO forces all the sensor inputs to '0', this forces the sensor outputs to a '1'. Observe the ARINC 429 output waveform. It should look similar to the waveform shown below:

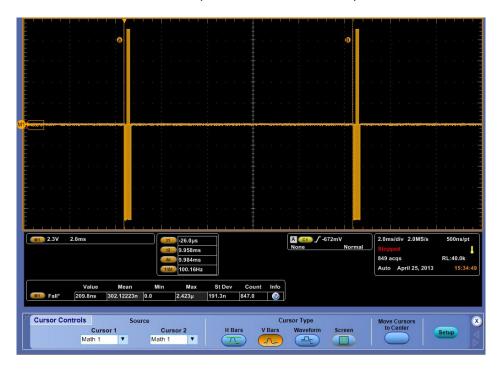



3. Now link jumper TST1 only, forcing the sensor inputs to all 1's. The output pattern for the data should be all 0's as shown below:



4. Now link jumper TST1 and TST0, forcing the sensor inputs to a continuously alternating 01. The output pattern for the data should be 10101010101010 be as shown below:




5. Replace TXENB link. Press Transmit, only one ARINC 429 word is transmitted. Change the Speed switch to '0', the waveform, should change to 12 kbps rate as shown below:



6. Set speed switch back to '1'. The TIMER switch allows for changing the transmit repetition rate. To use this feature, remove the TXENB link to enable continuous transmission.

Ensure the timer switch is set to '10000000'; one word will be transmitted every 10ms.


Observe this on the oscilloscope; it should look like the picture below:



7. Remove jumpers TSTO and TST1. Use the Speed and ARINC 429 bits switch to toggle ARINC 429 output bits 9, 10 and 27 to 31, see table on the board for switch positions. Check the corresponding bit changes on the ARINC 429 output.

#### **Sensor Input and Output Testing**

1. Remove jumpers TSTO and TST1. Leave the TXENB link off. Set up the board in default state, the sensors are in GND/Open state and inputs to switched to GND (ON). Now change all the Sensor input switches to 'OFF', the output waveform should show the all '1s' pattern, shown earlier in this document. Switch Sensor input 0 to 'ON' (GND). The ARINC 429 output should change to the one below, with the changed sensor output state transmitted on as a '1' on bit 11.



2. Set all the sensor input switches to 'ON' (GND), all the ARINC 429 data outputs (bits 11:26) should change to a '1'. This can also be checked on the connectors SENSOR OUT 0:7 and 8:15.

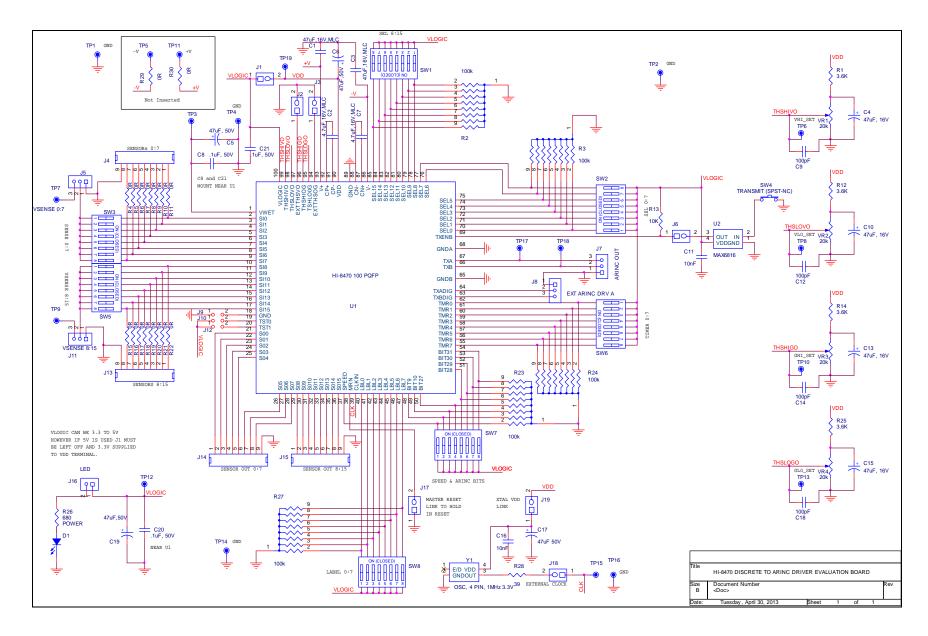
- 3. A similar test can be done with the sensors in Supply/Open mode. In this mode, the internal thresholds are VTHImin = 15.5V and VTHLOmax = 11V. Set all the 'Sensor Type Select' switches to '1'. Put J5 and J11 in the non-GND position. Connect a 15.5V supply on the VSense 0:7 and VSense 8:15 terminals. The guaranteed switching threshold of 15.5V is being applied to the input, with all the sensor input switches 'ON', all sensor outputs should be a '0'.
- 4. Lower the input voltage to 11V, this is the guaranteed low switching threshold, all the sensors outputs should now have changed to a '1'. This can be observed on the ARINC 429 output or on the Sensor Out pins.
- 5. To change the thresholds, remove the EXTTHSOG and EXTTHVO jumpers. External thresholds can now be applied using the potentiometers VR1 to VR4. Connect a voltmeter to the terminal above the potentiometer, adjust the potentiometer to set the threshold voltage. Note that threshold set is 10x the voltage on the test point. A typical set of threshold settings is shown in the table below:

| TEST POINT | VOLTAGE | THRESHOLD (X10) |
|------------|---------|-----------------|
| THSLOGO    | 0.45    | 4.5             |
| THSHIGO    | 1.05    | 10.5            |
| THSLOVO    | 0.6     | 6.0             |
| THSHIVO    | 1.2     | 12.0            |

6. To test the external thresholds, the sensor input switches should be set to 'Open' and the sensor input voltage applied to the Sensor Input pin (see table in next section).

### Connecting an external ARINC 429 driver

The connector 'EXT ARINC 429 DRIVER', provides CMOS logic level outputs for connecting an external ARINC 429 driver. In this case, the VDD supply is still required on the board as this supplies the Crystal Oscillator and the Clean Switch circuit. However if pin one of the XTAL VDD link and pin 1 of TXENB link are connected to an external 3.3V, then VDD link can be removed.


#### **Connecting external sensors**

To connect an external sensor, first verify the corresponding sensor DIP switch is the 'OPEN' state. The sensor wires can be connected to the board on the pin headers Sensor In 0:7 and 8:15. See table below.

When using GND/Open sensors, the VWET terminal must be used to pull up the sensors inputs. With VWET at 28V and VLOGIC at 3.3V, the wetting current will be approximately 1mA. If additional wetting current is required, connect an external resistor from VWET to the sense line. See datasheet for more guidance on wetting current tables and adjustment.

| Pin    | Sensor Number |      |  |
|--------|---------------|------|--|
| Number | 0:7           | 8:15 |  |
| 1      | 0             | 8    |  |
| 2      | 1             | 9    |  |
| 3      | 2             | 10   |  |
| 4      | 3             | 11   |  |
| 5      | 4             | 12   |  |
| 6      | 5             | 13   |  |
| 7      | 6             | 14   |  |
| 8      | 7             | 15   |  |
| 9      | GND           | GND  |  |

Connection pins for external sensors



AN-8470, Rev. A

**HOLT INTEGRATED CIRCUITS** 

3/2/15

#### **Appendix 1** Lightning Protection

The sense inputs and ARINC 429 driver outputs (TXA and TXB) are protected to RTCA/DO-160G, Section 22 Level 3 Pin Injection Test Waveform Set A (3 & 4), Set B (3 & 5A) and Set Z (3 & 5B) without the use of any external components. For more details please see the latest datasheet and Application Note AN-305.

The level of lightning protection can be increased by using external components, please see the Application Notes available on Holt's website <a href="http://www.holtic.com">http://www.holtic.com</a>.

The layout of a HI-8470 board should always have low conductivity paths from the device power/ground pin to the relevant power or ground origin. These paths should avoid proximity to sense or other signal traces; this applies to above and below as well as horizontally. It is good practice to have a power and ground 'moat' beneath the sense line to prevent disturbance on these lines during a 'lightning' event.

# Bill of Materials: HI-8470 Evaluation Board

| Item | Qty | Description                              | Reference                                         | DigiKey               | Mfr P/N                      |
|------|-----|------------------------------------------|---------------------------------------------------|-----------------------|------------------------------|
|      |     |                                          |                                                   |                       |                              |
| 1    | 1   | PCB, Bare, Eval Board                    | N/A                                               |                       | JetTech 35005                |
| 2    | 4   | Capacitor, Cer 0.1uF 20% 50V Z5U 0805    | C20, C8, C21, C11                                 | 399-1176-1-ND         | Kemet<br>C0805C104M5UACTU    |
| 3    | 1   | Capacitor, Cer 0.01uF 20% 50V Z5U 0805   | C16                                               | 399-1160-1-ND         | Kemet<br>C0805C103M5RACTU    |
| 4    | 4   | Capacitor, Cer 100pF 20% 50V Z5U 0805    | C9, C12, C14, C18                                 | 399-1122-1-ND         | Kemet<br>C0805C101J5GACTU    |
| 5    | 2   | Cap Cer 4.7uF 16V X7R 20% 1210<br>SMD    | C2, C7                                            | 587-1392-1-ND         | Taiyo EMK325B7475KN-T        |
| 6    | 2   | Cap Cer 47uF 10V X7R 20% 1210 SMD        | C1, C3                                            | 587-2783-1-ND         | Taiyo LMK325B7476MM-<br>TR   |
| 7    | 4   | Cap Alum 47uF 50V 20% SMD                | C4, C10, C13, C15                                 | PCE4222CT-ND          | Panasonic EEE-<br>HA1H470XPS |
| 8    | 4   | Cap Alum 47uF 16V 20% SMD                | C5, C6, C17, C19                                  | PCE3889CT-ND          | Panasonic EEE-<br>1CA470SP   |
| 9    | 4   | Header, Male 1x9, .1" Pitch              | J4, J13, J14, J15                                 | S1012E-09-ND          | Sullins S1012E-09-ND         |
| 10   | 4   | Header, Male 1x3, .1" Pitch              | J5, J11, J7, J8                                   | S1012E-03-ND          | Sullins S1012E-03-ND         |
| 11   | 10  | Header, Male 1x2, .1" Pitch              | J1, J2, J3, J6, J16,<br>J18, J19, J9, J10,<br>J12 | S1012E-02-ND          | Sullins S1012E-02-ND         |
| 12   | 1   | LED Green 0805                           | D1                                                | 160-1179-1-ND         | LiteOn LTST-C170GKT          |
| 13   | 18  | Resistor, 0 5% 1/8W 0805                 | R4-R11, R15-R22,<br>R29, R30                      | P0.0ACT-ND            | Panasonic ERJ-<br>6GEY0R00V  |
| 14   | 1   | Resistor, 39 5% 1/8W 0805                | R28                                               | P39ACT-ND             | Panasonic ERJ-<br>6GEYJ390V  |
| 15   | 1   | Resistor, 680 5% 1/8W 0805               | R26                                               | P680ACT-ND            | Panasonic ERJ-<br>6GEYJ681V  |
| 16   | 4   | Resistor, 3.6K 5% 1/8W 0805              | R1, R12, R14, R25                                 | P3.6KACT-ND           | Panasonic ERJ-<br>6GEYJ362V  |
| 17   | 1   | Resistor, 10K 5% 1/8W 0805               | R13                                               | P10KACT-ND            | Panasonic ERJ-<br>6GEYJ103V  |
| 18   | 5   | Resistor Network, 100K 5% 9 Res<br>10SIP | R27, R23, R24, R3,<br>R2                          | 770-101-R100KP-<br>ND | CTS 770101104P               |
| 19   | 4   | Resistor Trim Pot 20K, 0.5W, 20T, Th.    | VR1, VR2, VR3, VR4                                | 490-2881-ND           | Murata PV36W203C01B00        |
| 20   | 7   | Switch Tape Seal 8Pos SMD                | SW1, SW2, SW3,<br>SW5, SW6, SW7,<br>SW8           | CT2198MST-ND          | CTS 219-8MST                 |

Continued on next page.

# Bill of Materials (cont.): HI-8470 Evaluation Board

| Item | Qty | Description                                 | Reference                                  | DigiKey       | Mfr P/N                |
|------|-----|---------------------------------------------|--------------------------------------------|---------------|------------------------|
|      |     |                                             |                                            |               |                        |
| 21   | 1   | Osc 1.MHz 3.3V, 5x7mm SMD                   | Y1                                         | 631-1122-1-ND | FOX FXO-HC735-1        |
| 22   | 1   | Switch Tactile SPST-NC 0.05A, 50V           | SW4                                        | EG4588CT-ND   | E-Switch TL3310AF120QG |
| 23   | 1   | Test Point, Red Insulator, 0.062" hole      | TP19                                       | 5010K-ND      | Keystone 5010          |
| 24   | 5   | Test Point, Black Insulator, 0.062" hole    | TP1, TP14, TP2,<br>TP16, TP4               | 5011K-ND      | Keystone 5011          |
| 25   | 2   | Test Point, White Insulator, 0.062" hole    | TP15, TP3                                  | 5012K-ND      | Keystone 5012          |
| 26   | 2   | Test Point, Orange Insulator, 0.062" hole   | TP12, TP18                                 | 5013K-ND      | Keystone 5013          |
| 27   | 7   | Test Point, Yellow Insulator, 0.062" hole   | TP17, TP6, TP8,<br>TP10, TP13, TP7,<br>TP9 | 5014K-ND      | Keystone 5014          |
| 28   | 1   | HI-8470PQI - 100PQFP                        | U1                                         | HOLT IC       | Holt IC                |
| 29   | 1   | IC Debouncer SW SGL SOT143-4                | U2                                         | Max6816EUS    | Maxim MAX6816EUS+T     |
| 30   | 4   | Stand-off, Threaded #4-40F, 1/2" Long Round | Any                                        | 3480K-ND      | Keystone 3480          |
| 31   | 4   | Machine Screw, #4-40 x 1/4"                 | Any                                        | H343-ND       | PMS 440 0031 PH        |
| 32   | 4   | Lock Washer, Int.Tooth #4-40                | Any                                        | H236-ND       | B&F Intlwz 004         |

#### **REVISION HISTORY**

| Revision          | Date   | Description of Change            |
|-------------------|--------|----------------------------------|
| AN-8470, Rev. New | 5-3-13 | New                              |
| AN-8470, Rev. A   | 3-2-15 | Add BOM. Make minor corrections. |