DESCRIPTION

The HI-8477 is an ARINC 429 Receiver IC, designed for applications where an MCU is not desired or otherwise required. The device does not require an MCU for programmed configuration or operation. It is fully configured using control input pins, greatly simplifying system qualification.

The HI-8477 receives ARINC 429 data directly from the bus and makes the data available at 32 digital output pins. ARINC 429 label filtering is defined by 16 digital input pins, defining a maskable label match to enable reception of a single label or group of labels. A parity check pin provides the user the option of checking for correct odd parity on incoming ARINC 429 words. Incorrect parity words are ignored. If parity checking is turned off, all 32 bits of the ARINC word are stored without parity check.

The HI-8478 performs exactly the same as the HI-8477 with the exception that the 32 digital outputs from the ARINC 429 word are the complement (inverse) of the HI8477.

The receiver inputs are lightning protected to RTCA/DO160G, Section 22 Level 3 Pin Injection Test Waveform Set $A(3 \& 4)$, Set $B(3 \& 5 A)$ and $\operatorname{Set} Z(3 \& 5 B)$ with the use of only two external resistors.

A single 1 MHz clock source is required for ARINC 429 bit timing. The device supports both high-speed and lowspeed ARINC 429 data rates.

The $\mathrm{HI}-8477$ operates from a single 3.3 V or 5.0 V power supply.

FEATURES

- Pin programmable - requires no MCU or software control
- No need for certification to RTCADO-178B, "Software Considerations in Airborne Systems and Equipment"
- Robust CMOS Silicon-on-Insulator (SOI) technology
- On-chip ARINC 429 Line Receiver
- 3.3 V or 5 V single supply operation
- Maskable Label Filtering for single label or groups of labels
- Internal lightning protection circuitry for receiver inputs allows compliance with RTCA/DO-160G, Section 22 Level 3 Pin Injection Tests using only two external resistors.
- HI-8478 option provides the compliment of $\mathrm{HI}-8477$ digital outputs from the 32-bitARINC 429 word
- Certifiable to RTCADO-254, "Design Assurance for Airborne Electronic Hardware"

TYPICAL APPLICATION

Figure 1

BLOCK DIAGRAM

Figure 2

PIN DESCRIPTIONS

SYMBOL	$\begin{array}{\|c\|} \hline \text { HI-8477 } \\ \text { PIN } \end{array}$	$\begin{gathered} \text { HI-8478 } \\ \text { PIN } \end{gathered}$	FUNCTION	DESCRIPTION
VDD	1	1	Supply	3.3 V or 5.0V power
$\overline{\mathrm{MR}}$	2	2	Digital Input	Master Reset. Active low. Clears the output latch and initializes the ARINC receiver logic
CLKIN	3	3	Digital Input	1 MHz (+/-1\%) must be provided to operate the ARINC429 receiver
SPEED	4	4	Digital Input	If high ARINC 429 receiver set for 100 kbs , else 12.5 kbs
PARITY	5	5	Digital Input	If high, enables odd parity checking of incoming ARINC 429 words
TESTDIS	6	6	Digital Input	Initiates internal self-test routine following Master Reset when tied low
TESTOUT	7	7	Digital Input	If high, allows self-test word to be output on BIT(1:32) pins at end of self-test routine
RXA-R	8	8	Analog Input	Positive connection to ARINC 429 bus. Used with external 13k resistor.
RXB-R	11	11	Analog Input	Negative connection to ARINC 429 bus. Used with external 13k
LLA7	12	12	Digital Input	Label A match bit 7. Compared to ARINC 429 bit 1 when unmasked by FILT7
LLA6	13	13	Digital Input	Label A match bit 6. Compared to ARINC 429 bit 2 when unmasked by FILT6
LLA5	14	14	Digital Input	Label A match bit 5. Compared to ARINC 429 bit 3 when unmasked by FILT5
LLA4	15	15	Digital Input	Label A match bit 4. Compared to ARINC 429 bit 4 when unmasked by FILT4
LLA3	16	16	Digital Input	Label A match bit 3. Compared to ARINC 429 bit 5 when unmasked by FILT3
LLA2	17	17	Digital Input	Label A match bit 2. Compared to ARINC 429 bit 6 when unmasked by FILT2
LLA1	18	18	Digital Input	Label A match bit 1. Compared to ARINC 429 bit 7 when unmasked by FILT1
LLA0	19	19	Digital Input	Label A match bit 0. Compared to ARINC 429 bit 8 when unmasked by FILT0
SDE	20	20	Digital Input	When high, ARINC bit 9 and 10 must match SD9 and SD10 for word acceptance
SD10	21	21	Digital Input	If SDE is high, ARINC bit 9 and 10 must match SD9 and SD10 for word acceptance
SD9	22	22	Digital Input	If SDE is high, ARINC bit 9 and 10 must match SD9 and SD10 for word acceptance
FILT7	23	23	Digital Input	If high, ARINC 429 bit 1 is enabled for label match comparison, else ignore state of ARINC429 bit 1
FILT6	24	24	Digital Input	If high, ARINC 429 bit 2 is enabled for label match comparison, else ignore state of ARINC429 bit 2
FILT5	25	25	Digital Input	If high, ARINC 429 bit 3 is enabled for label match comparison, else ignore state of ARINC429 bit 3
FILT4	26	26	Digital Input	If high, ARINC 429 bit 4 is enabled for label match comparison, else ignore state of ARINC429 bit 4
FILT3	27	27	Digital Input	If high, ARINC 429 bit 5 is enabled for label match comparison, else ignore state of ARINC429 bit 5
FILT2	28	28	Digital Input	If high, ARINC 429 bit 6 is enabled for label match comparison, else ignore state of ARINC429 bit 6
FILT1	29	29	Digital Input	If high, ARINC 429 bit 7 is enabled for label match comparison, else ignore state of ARINC429 bit 7
FILT0	30	30	Digital Input	If high, ARINC 429 bit 8 is enabled for label match comparison, else ignore state of ARINC429 bit 8
GND	31	31	Supply	OV supply pin
UPDATE	32	32	Digital Output	Transitions high when a new word is transferred to the output latch and remains high until the next (new) word is transferred.
$\overline{\text { BIT1 }}$	N/A	33	Digital Output	ARINC 429 bit 1 inverted output from qualified received word, updated on UPDATE rising edge
BIT1	33	N/A	Digital Output	ARINC 429 bit 1 output from qualified received word, updated on UPDATE rising edge
BIT2	N/A	34	Digital Output	ARINC 429 bit 2 inverted output from qualified received word, updated on UPDATE rising edge
BIT2	34	N/A	Digital Output	ARINC 429 bit 2 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT3 }}$	N/A	35	Digital Output	ARINC 429 bit 3 inverted output from qualified received word, updated on UPDATE rising edge
BIT3	35	N/A	Digital Output	ARINC 429 bit 3 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT4 }}$	N/A	36	Digital Output	ARINC 429 bit 4 inverted output from qualified received word, updated on UPDATE rising edge
BIT4	36	N/A	Digital Output	ARINC 429 bit 4 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT5 }}$	N/A	37	Digital Output	ARINC 429 bit 5 inverted output from qualified received word, updated on UPDATE rising edge
BIT5	37	N/A	Digital Output	ARINC 429 bit 5 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT6 }}$	N/A	38	Digital Output	ARINC 429 bit 6 inverted output from qualified received word, updated on UPDATE rising edge
BIT6	38	N/A	Digital Output	ARINC 429 bit 6 output from qualified received word, updated on UPDATE rising edge
BIT7	N/A	39	Digital Output	ARINC 429 bit 7 inverted output from qualified received word, updated on UPDATE rising edge
BIT7	39	N/A	Digital Output	ARINC 429 bit 7 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT8 }}$	N/A	40	Digital Output	ARINC 429 bit 8 inverted output from qualified received word, updated on UPDATE rising edge
BIT8	40	N/A	Digital Output	ARINC 429 bit 8 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT9 }}$	N/A	41	Digital Output	ARINC 429 bit 9 inverted output from qualified received word, updated on UPDATE rising edge
BIT9	41	N/A	Digital Output	ARINC 429 bit 9 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT10 }}$	N/A	42	Digital Output	ARINC 429 bit 10 inverted output from qualified received word, updated on UPDATE rising edge
BIT10	42	N/A	Digital Output	ARINC 429 bit 10 output from qualified received word, updated on UPDATE rising edge

PIN DESCRIPTIONS (cont.)

SYMBOL	$\begin{gathered} \hline \mathrm{HI}-8477 \\ \mathrm{PIN} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{HI}-8478 \\ \mathrm{PIN} \end{array}$	FUNCTION	DESCRIPTION
$\overline{\text { BIT11 }}$	N/A	43	Digital Output	ARINC 429 bit 11 inverted output from qualified received word, updated on UPDATE rising edge
BIT11	43	N/A	Digital Output	ARINC 429 bit 11 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT12 }}$	N/A	44	Digital Output	ARINC 429 bit 12 inverted output from qualified received word, updated on UPDATE rising edge
BIT12	44	N/A	Digital Output	ARINC 429 bit 12 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT13 }}$	N/A	45	Digital Output	ARINC 429 bit 13 inverted output from qualified received word, updated on UPDATE rising edge
BIT13	45	N/A	Digital Output	ARINC 429 bit 13 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT14 }}$	N/A	46	Digital Output	ARINC 429 bit 14 inverted output from qualified received word, updated on UPDATE rising edge
BIT14	46	N/A	Digital Output	ARINC 429 bit 14 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT15 }}$	N/A	47	Digital Output	ARINC 429 bit 15 inverted output from qualified received word, updated on UPDATE rising edge
BIT15	47	N/A	Digital Output	ARINC 429 bit 15 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT16 }}$	N/A	48	Digital Output	ARINC 429 bit 16 inverted output from qualified received word, updated on UPDATE rising edge
BIT16	48	N/A	Digital Output	ARINC 429 bit 16 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT17 }}$	N/A	49	Digital Output	ARINC 429 bit 17 inverted output from qualified received word, updated on UPDATE rising edge
BIT17	49	N/A	Digital Output	ARINC 429 bit 17 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT18 }}$	N/A	50	Digital Output	ARINC 429 bit 18 inverted output from qualified received word, updated on UPDATE rising edge
BIT18	50	N/A	Digital Output	ARINC 429 bit 18 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT19 }}$	N/A	51	Digital Output	ARINC 429 bit 19 inverted output from qualified received word, updated on UPDATE rising edge
BIT19	51	N/A	Digital Output	ARINC 429 bit 19 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT20 }}$	N/A	52	Digital Output	ARINC 429 bit 20 inverted output from qualified received word, updated on UPDATE rising edge
BIT20	52	N/A	Digital Output	ARINC 429 bit 20 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT21 }}$	N/A	53	Digital Output	ARINC 429 bit 21 inverted output from qualified received word, updated on UPDATE rising edge
BIT21	53	N/A	Digital Output	ARINC 429 bit 21 output from qualified received word, updated on UPDATE rising edge
BIT22	N/A	54	Digital Output	ARINC 429 bit 22 inverted output from qualified received word, updated on UPDATE rising edge
BIT22	54	N/A	Digital Output	ARINC 429 bit 22 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT23 }}$	N/A	55	Digital Output	ARINC 429 bit 23 inverted output from qualified received word, updated on UPDATE rising edge
BIT23	55	N/A	Digital Output	ARINC 429 bit 23 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT24 }}$	N/A	56	Digital Output	ARINC 429 bit 24 inverted output from qualified received word, updated on UPDATE rising edge
BIT24	56	N/A	Digital Output	ARINC 429 bit 24 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT25 }}$	N/A	57	Digital Output	ARINC 429 bit 25 inverted output from qualified received word, updated on UPDATE rising edge
BIT25	57	N/A	Digital Output	ARINC 429 bit 25 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT26 }}$	N/A	58	Digital Output	ARINC 429 bit 26 inverted output from qualified received word, updated on UPDATE rising edge
BIT26	58	N/A	Digital Output	ARINC 429 bit 26 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT27 }}$	N/A	59	Digital Output	ARINC 429 bit 27 inverted output from qualified received word, updated on UPDATE rising edge
BIT27	59	N/A	Digital Output	ARINC 429 bit 27 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT28 }}$	N/A	60	Digital Output	ARINC 429 bit 28 inverted output from qualified received word, updated on UPDATE rising edge
BIT28	60	N/A	Digital Output	ARINC 429 bit 28 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT29 }}$	N/A	61	Digital Output	ARINC 429 bit 29 inverted output from qualified received word, updated on UPDATE rising edge
BIT29	61	N/A	Digital Output	ARINC 429 bit 29 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT30 }}$	N/A	62	Digital Output	ARINC 429 bit 30 inverted output from qualified received word, updated on UPDATE rising edge
BIT30	62	N/A	Digital Output	ARINC 429 bit 30 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT31 }}$	N/A	63	Digital Output	ARINC 429 bit 31 inverted output from qualified received word, updated on UPDATE rising edge
BIT31	63	N/A	Digital Output	ARINC 429 bit 31 output from qualified received word, updated on UPDATE rising edge
$\overline{\text { BIT32 }}$	N/A	64	Digital Output	BIT32 inverted output.
BIT32	64	N/A	Digital Output	ARINC 429 bit 32 output from qualified received word, updated on UPDATE rising edge. If PARITY pin is HIGH, parity checking is enabled. Received words with incorrect parity are ignored.

PIN CONFIGURATIONS

Figure 3

FUNCTIONAL DESCRIPTION

OVERVIEW

The HI-8477 and HI-8478 are autonomous ARINC 429 receivers intended for applications where a host MCU is either undesirable or not otherwise needed. The parts contain an on-chip ARINC 429 line receiver and protocol logic to decode and capture selected ARINC 429 data words. The ARINC 429 word is made available to the application on 32 CMOS output pins, which may be used to directly control subsystem functions. The HI-8478 device provides data which is the complement of $\mathrm{HI}-8477$.

ARINC 429 LINE RECEIVER

An on-chip ARINC 429 analog receiver operates from the same supply as the digital logic. Two input pins, RXA-R and RXB-R, require an external series resistor of 13 kOhm between the pin and ARINC 429 bus for proper signal level detection. With these resistors the inputs are lightning protected to RTCA/DO-160G, Section 22 Level 3 Pin Injection, Test Waveform Set A (3 \& 4), Set B (3 \& 5A) and Set Z (3 \& 5B).

Application Note AN-301 provides guidelines for enhanced lightning protection circuitry.

RESET OPERATION

Applications may wire the device outputs directly to logic, relay drivers, DACs, etc. It is therefore important to define the state of the outputs during the interval between system reset and the reception of a first, valid ARINC 429 word.

The HI-8477 holds all BIT1:32 outputs in tri-state following reset. The pins have internal weak (60kOhm) pull-down resistors. This provision allows hardwiring 10kOhm resistors at each output to VDD or GND to set the initial state of the 32 bits. The HI-8478 does not have this feature; all BIT1:32 outputs will be logic "High" following reset.

ARINC 429 WORD DECODER

A 1 MHz clock at CLKIN samples the outputs of the ARINC 429 receiver at ten times the nominal bit rate. The SPEED pin should be set to a zero when connecting the $\mathrm{HI}-8477$ to a low-speed ($12.5 \mathrm{~kb} / \mathrm{s}$) ARINC 429 bus, or to a one for connection to a high-speed ($100 \mathrm{~kb} / \mathrm{s}$) bus. The PARITY pin selects whether parity checking of incoming ARINC 429 words is enabled. If the PARITY pin is set high, the receiver logic checks for odd parity. If odd parity was received, the word is stored unaltered in the input shift register (see Figure 2). If even parity was received (error), the word is discarded. Setting the PARITY pin low disables parity checking and all ARINC 429 received words are passed to the input shift register unaltered.

LABEL FILTERING

All properly encoded ARINC 429 received data words are captured by the input shift register. However, only words meeting user-specified label and SD values are then passed to the output latch (see Figure 2). Eight label match inputs, LLA:(7:0), and eight filter inputs, FILT(7:0) define the label match criteria. Setting a filter bit high enables matching for that bit of the received ARINC 429 label byte. If FILTn is high, the ARINC label bit must match the value at LLAn for the word to be accepted. Setting FILTn low, disables matching for that bit, declaring it a "don't care" bit.

Setting $\operatorname{FILT}(7: 0)$ to 0×00 turns off label matching for all label bits; in this case the HI-8477 accepts all ARINC 429 labels. Judicious selection of LLA(7:0) and FILT(7:0) values allows either a single ARINC 429 label to be accepted by the filter or a group of labels. For example, setting $\operatorname{FILT}(7: 0)$ to $0 \times F C$ and $\operatorname{LLA}(7: 0)$ to 0×80, accepts ARINC 429 labels 0×80 through $0 x 83$ only (10-13 octal).

Note that ARINC 429 defines the label bits as "big-endian". Therefore received ARINC 429 bit 1 is the MSB (label bit 7), and ARINC received bit 8 is the LSB (label bit 0). Thus LLA7 and FILT7 compare ARINC bit 1, LLA6 and FILT6 compare ARINC bit 2, etc.

ARINC bits 9 and 10 are the SD bits. Incoming ARINC 429 words captured in the input shift register may also be compared for SD matching as a condition for passing to the output latch. Taking the SDE pin high enables this feature. When SDE is high, ARINC bits 9 and 10 are compared with the state of the SD9 and SD10 input pins. Label filtering AND SDE matching criteria must be met to allow a received word to be passed to the output latch.

PARALLEL OUTPUT DATA

Data is passed to the output latch one CLKIN period before the rising edge of the UPDATE pin and remains stable until a new valid and label-matching ARINC 429 word is received. UPDATE goes low as soon as the first bit of a potential new ARINC 429 word is detected by the receiver.

FUNCTIONAL DESCRIPTION (cont.)

SELF-TEST OPERATION

The HI-8477 includes a self-test feature. See Figure 2. The purpose of the Self-Test word block is to send a test transmission to the Receiver inputs (after the input resistor) coded with LLA followed by all Ones. It is activated by an edge sensitive input. The edge is generated on the first clock (CLKIN pin) after the Master Reset rising edge, only if the TESTDIS input is wired Low. The user has the option of enabling the received self-test word to be latched into the output latch and made available at the $\operatorname{BIT}(1: 32)$ outputs. If the TESTOUT input is high, the tri-state operation after Master Reset is cancelled one CLKIN period before UPDATE goes high and the test word is output at BIT(1:32). If TESTOUT is low, the BIT(1:32) outputs remain in tri-state until the first valid and matching ARINC 429 word is received. The UPDATE pin stays high until the first bit of a potential new ARINC 429 word is received.

Note that label and SDE filtering apply equally to the self-test word as for normal operation.

Figure 4. ARINC 429 Word Format

LIGHTNING PROTECTION

The ARINC 429 data bus inputs, RXA and RXB, are lightning protected to RTCA/DO-160G, Section 22 Level 3 Pin Injection Test Waveform Set A (3 \& 4), Set B (3 \& 5A) and Set Z (3 \& 5B) with the use of 13kOhm external resistors. See application notes AN-300 and AN-301 for further details on lightning protection. Figures 5,6 and 7 summarize the waveforms.

Figure 5. DO-160G Lightning Induced Transient Voltage Waveform 3. Voc $=600 \mathrm{~V}$, Isc $=24 \mathrm{~A}$, Frequency $=1 \mathrm{MHz} \pm 20 \%$.

Waveform 4

Figure 6. DO-160G Lightning Induced Transient Voltage Waveform 4. Voc $=300 \mathrm{~V}$, $\mathrm{Isc}=60 \mathrm{~A}$.

Waveform 5

Figure 6. DO-160G Lightning Induced Transient Voltage Waveforms 5A and 5B.
Voc $=300 \mathrm{~V}$, Isc $=300 \mathrm{~A}$.

ABSOLUTE MAXIMUM RATINGS

Voltages referenced to Ground	
Supply Voltage (VDD) -0.3 V to +7 V
Maximum Current at any pin - 150 mA
Logic Input Voltage Range ..	-0.3V to VLOGIC+0.3V
ARINC 429 Input Voltage Range -120V to +120V
Continuous Power Dissipation (TA (derate $10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1.5W
Solder Temperature (reflow) $260^{\circ} \mathrm{C}$
Junction Temperature	$175^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Supply Voltage VLOGIC \qquad 3.0 V to 5.5 V	
Operating Temperature Range Industrial Screening Hi-Temp Screening	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

D.C. ELECTRICAL CHARACTERISTICS

VDD $=3.0$ to $5.5 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=$ Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
ARINC 429 RECEIVER INPUTS (RXA-R/RXB-R with external $13 \mathrm{k} \Omega$ series resistors)						
ARINC input voltage one or zero null common mode	$V_{\text {DIN }}$ $V_{\text {NIN }}$ $\mathrm{V}_{\mathrm{COM}}$	Differential voltage with respect to ground	$\begin{gathered} 6.5 \\ - \\ -30.0 \end{gathered}$	10 - -	$\begin{gathered} 2.5 \\ +30.0 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
ARINC input resistance RINA-R to RINB-R RINA-R or RINB-R to GND RINA-R or RINB-R to VCC	$R_{\text {DIFF }}$ $\mathrm{R}_{\text {GND }}$ $\mathrm{R}_{\text {vcc }}$	Supplies floating	-	$\begin{aligned} & 200 \\ & 140 \\ & 100 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
LOGIC INPUTS						
Input Voltage	VIH	Input Voltage HI	70\%			VDD
	VIL	Input Votage LO			30\%	VDD
Input Current	IsINK	$\mathrm{VIN}=\mathrm{VDD}$			1	$\mu \mathrm{A}$
	ISOURCE	$\mathrm{VIN}=\mathrm{GND}$	-1			$\mu \mathrm{A}$
LOGIC OUTPUTS						
Output Voltage	VOH	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	90\%			VDD
	Vol	$\mathrm{loz}=100 \mu \mathrm{~A}$			10\%	VDD
Output Current	IoL	Vout $=0.4 \mathrm{~V}$	1.6			mA
	IOH	Vout $=$ VLOGIC - 0.4 V			-1.0	mA
Tri-state Current (HI-8477, BIT1 - BIT32 only)	IozH	$\mathrm{VIN}=\mathrm{VDD}, 60 \mathrm{k} \Omega$ pull down	20	50	80	$\mu \mathrm{A}$
	IozL	$\mathrm{VIN}=\mathrm{GND}$	-1			$\mu \mathrm{A}$

D.C. ELECTRICAL CHARACTERISTICS (cont.)

$\mathrm{VDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{TA}=$ Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
SUPPLY						
VDD Supply current	IDD5	$\mathrm{VDD}=5.5 \mathrm{~V}$		5	8	mA
	IDD3	$\mathrm{VDD}=3.6 \mathrm{~V}$		4	6	mA
CAPACITANCE						
Output Capacitance	Co			15		pF
Output Capacitance	Cl			5		pF

AC ELECTRICAL CHARACTERISTICS

$\mathrm{VDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
CLOCK						
CLKIN Frequency	fclk		0.99		1.01	MHZ
CLKIN Mark: Space Ratio	tCLKMS		40		60	\%
DATA RECEPTION						
Delay, ARINC 429 word received to BIT1-32 change	tud	SPEED = 1 (100kb/s ARINC 429)			10	$\mu \mathrm{s}$
	tud	SPEED $=0$ (12.5kb/s ARINC 429)			80	$\mu \mathrm{s}$
Delay ARINC bit 1 to UPDATE low	tul	SPEED = 1 (100kb/s ARINC 429)			10	$\mu \mathrm{s}$
	tul	SPEED $=0$ (12.5kb/s ARINC 429)			80	$\mu \mathrm{s}$
BIT1-32 change before UPDATE high	tBSU	D $=1 /$ CLKIN for High speed D $=8 /(C L K I N)$ for Low speed	D-50	D	$D+150$	ns
RESET \& SELF TEST						
Master Reset ($\overline{\mathrm{MR}}$) Pulse width	tMR		100			ns
TESTDIS to $\overline{\mathrm{MR}}$ rising edge set-up time	tMTSU		50			ns
TESTDIS after $\overline{\mathrm{MR}}$ rising edge hold time	tMTH		50			ns
Self-test execution time	tsFT	SPEED = 1 (100kb/s ARINC 429)			400	$\mu \mathrm{s}$
	tsFT	SPEED $=0$ (12.5kb/s ARINC 429)			3	ms
Delay MR rising to BIT default state	tDMR				50	ns

TIMING DIAGRAMS

Figure 7. Reset and Self-Test timing (TESTOUT = "High")

ORDERING INFORMATION

REVISION HISTORY

P/N	Rev	Date	Description of Change
DS8477	New	$04 / 01 / 15$	Initial Release

64 PIN PLASTIC THIN QUAD FLAT PACK (TQFP) milimeters (inches)
Package Type: 64PQS
 is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)

