

AN-571 Rev. New Holt Integrated Circuits

MIL-STD-1553 Bus Controller
Software Development and Migration Guide

DDC® Enhanced Mini-ACE® BC to Holt BC

Devices Supported

HI-6130, HI-6131
HI-6132, HI-2130
HI-6137, HI-6138

HI-6140

January 2016

DDC®, AceXtreme®, and Mini-ACE® are registered trademarks of Data Device Corporation, Bohemia, NY, USA.
There is no affiliation between Data Device Corporation and Holt Integrated Circuits.

AN-571 Rev. New Holt Integrated Circuits

This page Intentionally Blank

3 Holt Integrated Circuits

1 INTRODUCTION

This application note can be used as a guide for developing Bus Controller software using
the Holt HI-613x family of MIL-STD-1553 Terminals. Additionally, there is a focus on
migrating existing Bus Controller software developed for any of the DDC Enhanced Mini-ACE
compatible Bus Controller Devices to any of the Holt HI-613x Bus Controller capable
devices. This is done through the development of several application specific examples
implemented for both devices. Important differences and similarities in configuration or
operation are highlighted. In general, the Holt BC operation is almost identical to the
operation of the DDC BC greatly simplifying software migration. In addition, Holt can
provide an API library that is software compatible to the DDC Enhanced Mini-ACE and
AceXtreme API libraries from DDC.

Initially, the BC configuration example illustrates the programming steps necessary to
initialize the device’s registers and memory. Then detailed reviews show the memory map
and data structures while describing similarities and differences between the Holt and DDC
Bus Controller. Finally, application specific examples are reviewed in detail.

It is important to point out that DDC Enhanced Mini-ACE compatible terminals support two
different architectures. The Legacy BC Mode is compatible with older generation DDC
products, while the Enhanced BC Mode is now recommended for newer designs. This
application note focuses on comparing the DDC Enhanced BC Mode to the Holt BC
operation.

2 DEVICE INITIALIZATION

Before Bus Controller operation can begin, the BCENA input pin must be connected to logic
1 to allow BC operation. All Bus Controller operational registers must be properly
configured after a RESET is applied to the device and READY is high. The BC Instruction List
in RAM must be initialized to define message sequencing and conditional execution, and
finally the host must assert BCSTRT bit 13 in the Master Configuration Register 0x0000 to
initiate execution of Instruction List op codes.

Initial control of BC message sequencing involves the BC Instruction List Pointer in register
0x0034. Before BC execution begins, the instruction list starting address is copied from the
BC Instruction List Start Address Register, 0x0033. Once message sequencing is underway,
the BC Instruction List Pointer in register 0x0034 is updated by the BC control logic.

4 Holt Integrated Circuits

Table 1 - Initialization Steps

Initialization Steps
Tasks: Holt HI-613x BC DDC EMACE Enhanced BC

Reset HW Master Reset - Verify BCENA pin is
strapped to Logic "1" and READY is high

Perform SW Reset by writing 0x0001 to
Start/Reset Register

Initialize Register
Settings

Initialize Master Configuration Register Initialize Config Registers #1 and #2
Initialize the Time Tag Counter
Configuration Register

Initialize Config Register #3

Initialize General Purpose Queue Pointer
Register

Initialize Interrupt Mask Registers #1 and #2

Initialize the BC Interrupt Enable Register Initialize Config Register #4 and #5
Initialize the BC Interrupt Output Enable
Register.

Initialize Config Register #6 and

Initialize the HW Interrupt Enable and
Output Enable Registers.

Initialize Config Register #7

Initialize the BC
Instruction List

Load Initial address to BC Instruction List
Start Address Register

Load Initial address to BC Instruction List Start
Address Register

Initialize BC
Message Control/
Status Blocks

For each Message Block, initialize the
Control Word, Command Word, Data
Block Pointer, and Time-to-Next Message.

For each Message Block, initialize the Control
Word, Command Word, Data Block Pointer,
and Time-to-Next Message.

Initialize the BC
Instruction List

Create the BC instruction List in RAM
consisting of Op Code and Parameter
pairs.

Create the BC instruction List in RAM
consisting of Op Code and Parameter pairs.

Initialize Data
Blocks

Initialize Transmit Blocks with Data to be
Transmitted

Initialize transmit data blocks with data to be
transmitted.

All Rx data blocks in RAM already 0x0000
after master reset.

Initialize Rx data blocks with 0x0000

Enable BC
Execution

Enable the BC by setting the BCSTART bit
in the Master Configuration Register.

Start the BC execution by setting the BC/MT
START Bit in the Start/Reset Register

2.1 Initialization Steps Compared

In General, the steps required to initialize the HI-613x Bus Controller are very similar to the
steps required to initialize the DDC EMACE Enhanced Bus Controller. The main differences are
in the configuration register locations and bit locations. The HI-613x BC does not support the
DDC Legacy Bus Controller modes and as such configuration of the registers is much more
straightforward and simpler since there are no configuration bits for the legacy operation. In
addition the HI-613x registers and bit locations are more logically organized.

Once the registers are initialized the remaining steps are virtually identical. When porting
software from DDC EMACE to Holt HI-613x, the user should take care to review the memory
locations in SRAM of the Message Control/Status Block and Data Block locations to make sure
there are no conflicts.

5 Holt Integrated Circuits

3 MEMORY MAP

Table 2 shows a typical HI-613x Memory Map when using the Bus Controller. This memory
map will be similar for all Holt devices that support BC operation.

Table 2 - Holt HI-613x BC Memory Map

Holt HI-613x Typical BC Memory Map
Address Description Comments

0x0000-0x004F Registers Lower 80 memory locations are Registers
0x0050-0x0053 Reserved Not used in BC example
0x0054-0x005B BC Call Stack
0x005C-0x00BF MT Structures Not used in BC example
0x00C0-0x00FF BC General Purpose Queue Default Location - Can be relocated.
0x0100-0x017F MT Message Filter Table Not used in BC example
0x0180-0x01BF 64 Word Interrupt Log Data Buffer Chronological History of Interrupt Events
0x01C0-0x01DF RT 1 Temporary Rx Buffer Not normally used by Host
0x01E0-0x01FF RT2 Temporary Rx Buffer Not used in BC example
0x0200-0x02FF RT1 Command Illegalization Table Not used in BC example
0x0300-0x03FF RT2 Command Illegalization Table Not used in BC example
0x0400-0x04FF RT 1 Descriptor Table Default Not used in BC example
0x0500-0x05FF RT 1 Mode Code Descriptor Table Not used in BC example
0x0600-0x06FF RT 2 Descriptor Table Default Not used in BC example
0x0700-0x07FF RT 2 Mode Code Descriptor Table Not used in BC example

0x0800-0x7FFF Host Allocated RAM Used for BC Instruction List, Message Control
and Status Blocks, Message Data blocks, etc.

4 BC MESSAGE SEQUENCE CONTROL
The operation of the Holt BC message sequence control structures and operation is shown in
Figure 1. The message sequence control structure is basically identical to DDC enhanced BC
mode. The BC will execute instructions called Op Codes that are stored in the BC instruction list
in SRAM. Each entry in the BC instruction list is two 16 bit words and includes the Op Code and
a parameter or pointer. The starting location of the instruction list pointer is initialized by the
host process in the BC Instruction List Start Address Register at location 0x0033. The current
location of the sequence control engine within the BC Instruction List is maintained by device
logic in the BC Instruction List Pointer Register at location 0x0034.

The Op Code Parameter pointer addresses the Message Control/Status Block (MCSB) also in
SRAM. As mentioned above this structure, when operated with the 16-bit time tag is virtually
identical to the DDC enhanced BC. The only minor difference is the instruction list pointer
registers are at different offsets.

6 Holt Integrated Circuits

Figure 1 - Bus Controller Message Sequence Structures

4.1 BC INSTRUCTION SET
As previously mentioned, the instruction list pointer addresses a pair of 16-bit words consisting
of an Op Code word followed by a Parameter Word. The format of the Op Code word is shown
in Figure 2 below. The Holt BC Op Code format is identical to the DDC Enhanced BC Op Code
format.

Figure 2 - BC Instruction List Op Code Format

The Holt Bus Controller supports 28 Op Codes including all 20 of the Op Codes supported by the
DDC Enhanced BC. This means that aside from locations in user memory or registers, the BC

BC Instruction
List Pointer
reg 0x0034

HI-613x
Register
Space

BC Instruction
List Start Address

reg 0x0033

Parameter

Op Code

Bus Controller
Instruction List

in RAM

Data Word N

Data Word(s)Increasing
Memory
Address

Parameter (pointer)

Parameter

Command Word *

BC Control Word

Message
Control / Status
Block in RAM

Time to Next Msg

Data Block Pointer

Block Status Word

RT Status Word

2nd RT Status Word

Time Tag Word

Tx Command Word

Loopback Word

RT-RT Message Only

* Rx Command Word
if RT-RT Message

Message Data
Block in RAM

6 Unused Addresses

Time Tag Bits 31-16
if BC Uses 32-Bit

Time Base

BC General Purpose
Queue Pointer

reg 0x0038

GPQ Word 63

GPQ Word 0

BC GP Queue
in RAM

Op Code

Op Code

GPQ Words 1 - 62

Data Word 1

9 8 7 6 5 4 3 2 1 0

7 Holt Integrated Circuits

Instruction List developed for DDC hardware will operate exactly as intended when used with
Holt hardware as shown in Table 3 below.

Table 3 - Holt BC Opcodes as Compared to DDC

Name Instruction Op
Code

Parameter Comments

XEQ Execute Message 0x01 Pointer to MCSB Same
JMP Jump 0x02 Address in BC instruction List Same
CAL Call Subroutine 0x03 Address in BC instruction List Same
RTN Return from Subroutine 0x04 Don't Care Same
IRQ Interrupt Request 0x06 4-bit Interrupt Pattern Same - except bit

locations and IRQ
register Locations

HLT Halt 0x07 Don't Care Same
DLY Delay 0x08 Delay Time (1us/LSB) Same
WFT Wait for Frame Timer = 0 0x09 Don't Care Same
CFT Compare to Frame Timer 0x0A Time Value (100us/LSB) Same
CMT Compare to Message Timer 0x0B Time Value (1us/LSB) Same
FLG General Purpose Flag Bits 0x0C Value sets/toggles GP Flag

bits.
Same

LTT Load Time Tag 0x0D Time Value (Resolution as
programmed in TT Config
Register.

Same

LFT Load Frame Timer 0x0E Time Value (100us/LSB) Same
SFT Start Frame Timer 0x0F Don't Care Same
PTT Push Time Tag 0x10 Don’t Care Same
PBS Push Block Status Word 0x11 Don't Care Same
PSI Push Immediate Value 0x12 Immediate Value Same
PSM Push Indirect 0x13 Memory Address Same
WTG Wait for Trigger 0x14 Don't Care Same
XQF Execute and Flip 0x15 Pointer to MCSB Same

In addition to the 20 "DDC compatible" Op Codes, the Holt BC supports eight additional Op
Codes allowing the designer greater flexibility and access to advanced BC functionality including
expanded 32-bit Time Tag and N-Iteration repeating loop execution. The eight additional Op
Codes are shown in Table 4

8 Holt Integrated Circuits

Table 4 - Additional Holt BC Op Codes (Unsupported by DDC)

Name Instruction Op
Code

Parameter Notes / Function Comments

XQG Execute
Message and
Go

0x16 Pointer to MCSB Unlike XEQ, the XQG op code does not wait for the
decrementing message timer to hit 0 before fetching the
next instruction op code. As long as op codes following
XQG do not execute a 1553 message, each op code is
performed after fetch. Upon reaching a following XEQ,
XQG, XQF or XFG execute-message instruction,
transaction of its 1553 message does not begin until Time
to Next Message count reaches 0. Thus, programmed
1553 message timing is maintained, while allowing
execution of non-message instruction op codes.

Holt BC Only

LTH Load Time Tag
Counter High

0x18 Time Value
(Resolution as
programmed in TT
Config Register.

Allows user to load high word of the optional 32-bit BC
Time Tag.

Holt BC Only

PTH Push Time Tag
High

0x19 Don't Care Allows user to push value of the high word of the optional
32-bit BC Time Tag

Holt BC Only

PTB Push Time Tag
Both

0x1A Don't Care Allows user to push values of both the high and low
words of the optional 32-bit BC Time Tag

Holt BC Only

XFG Execute, Flip,
and Go

0x1A Pointer to MCSB Unlike XQF, the XFG op code does not wait for the
decrementing message timer to hit 0 before fetching the
next instruction op code. As long as op codes following
XFG do not execute a 1553 message, each op code is
performed after fetch. Upon reaching a following XEQ,
XQG, XQF or XFG execute-message instruction,
transaction of its 1553 message does not begin until Time
to Next Message count reaches 0. Thus, programmed
1553 message timing is maintained, while allowing
execution of non-message instruction op codes.

Holt BC Only

WMP Write
Immediate
Value to WMI
memory
Pointer

0x1B Immediate Value If the Condition Code evaluates True, write the parameter
specified immediate value to the dedicated WMI memory
pointer (a register not accessible by the host). Otherwise
(Condition Code Evaluates False), continue execution at
the next op code in the BC Instruction List. Immediate
value must exceed 0x4F or WMP instruction has no
effect. After reset, the default WMI memory pointer
value is 0x0050.

Holt BC Only

WMI Write
immediate
Value to
Memory

0x1C Immediate Value If the Condition Code evaluates True, write the parameter
specified immediate value to 0x0050 or the memory
address specified by the last WMP instruction performed.
Otherwise (Condition Code Evaluates False), continue
execution at the next op code in the BC Instruction List.

Holt BC Only

DSZ Decrement
RAM specified
by Memory
Address

0x1D Memory Address If the Condition Code evaluates True, the memory
address specified by the parameter word is decremented.
If the new value is non-zero, the next instruction is
executed. If the decremented value is zero, the next
instruction is skipped. Otherwise (Condition Code
Evaluates False), continue execution at the next op code
in the BC Instruction List. The primary purpose of DSZ is
N-iteration repeating execution loops. N is initialized with
a WMI op code, and the instruction following DSZ is a
JMP to top-of-loop.

Holt BC Only

9 Holt Integrated Circuits

4.2 MESSAGE CONTROL/STATUS BLOCK (MCSB)
The MCSB shown in Figure 3, configures the message control and command words and also
provides message status. The MCSB contains a pointer to the Data Block which stores data that
is received or data to be transmitted. The MCSB is 8 words for most messages and is 10 words
for RT-to-RT messages.

Figure 3 - Structure of BC Message Control/Status Blocks

Note that the pointer parameter in the BC instruction list referencing the first word of a
message’s control/status block (e.g. the BC Control Word) should contain an address value that
is modulo 8. If the message is an RT-to-RT transfer, the pointer parameter should contain an
address value that is modulo 16.

4.2.1 BC CONTROL WORD
The BC Control Word is the first word in each Message Control / Status Block. The BC Control
Word is not transmitted on the MIL-STD-1553 bus. This word is initialized and maintained by
the host to specify message attributes: message format, which bus to use, bit masks for the

Message
Control / Status Block

for all messages
except RT-to-RT

Message
Control / Status Block

for RT-to-RT
messages only

Message
Control / Status Block

for all messages
except RT-to-RT

Message
Control / Status Block

for RT-to-RT
messages only

Block Status Word

High Time Tag Word High Time Tag Word

Low Time Tag Word

Bus Controller Configured for 16-Bit Time Base Bus Controller Configured for 32-Bit Time Base

Command Word

BC Control Word

Time to Next Msg

Data Block Pointer

Command Word

BC Control Word

Time to Next Msg

Data Block Pointer

Block Status Word

RT Status Word RT Status Word

Time Tag Word

Loopback Word

Rx Command Word

BC Control Word

Time to Next Msg

Data Block Pointer

Block Status Word

Tx RT Status Word

Time Tag Word

Rx Command Word

BC Control Word

Time to Next Msg

Data Block Pointer

Block Status Word

Time Tag Word

Loopback Word

Rx RT Status Word

Tx Command Word

6 Unused Addresses

Tx RT Status Word

Rx RT Status Word

Tx Command Word

6 Unused Addresses
Increasing
Memory
Address

10 Holt Integrated Circuits

received RT Status Word, enabling interrupt at end-of-message, and enabling self test. With
the exception of 1553A/B* (Bit 3), the Holt BC Control Word is identical to the DDC BC Control
Word. For all MIL-STD-1553B implementations the Holt and DDC BC Control Word are
interchangeable requiring no change to software.

Figure 4 - Holt BC Control Word

4.2.2 COMMAND WORD
This is the MIL-STD-1553 Command Word. When message is RT-to-RT, this is the Receive
Command Word.

4.2.3 DATA BLOCK ADDRESS POINTER
The Data Block Pointer in the Message Control / Status Block provides the starting address in
RAM for storage of message data words or mode code data. For BC-to-RT (receive) commands,
this pointer contains the RAM location for the first data word transmitted by the BC. For RT-to-
BC (transmit) commands or RT-to-RT commands, this pointer contains the RAM location for
storing the first data word transmitted by the RT (and received by the BC).

4.2.4 TIME TO NEXT MESSAGE WORD
This word in the Message Control / Status Block specifies the delay from the start of this
message, to the start of the next message. The delay is programmable with 1 μs per LSB
resolution, and has a maximum value of 65.535 milliseconds.

4.2.5 BLOCK STATUS WORD (BSW)
The Block Status Word in the Message Control / Status Block provides information regarding
message status (in-process or completed), the bus it was transmitted on, whether errors
occurred during the message, and the type of occurring errors. This word is written into RAM by
the device after message completion. Because it resides in RAM, the host has read-write access,
although this word is usually treated as read-only by the host. As shown in Figure 5 the Holt BC
Block Status Word is identical in both functionality and bit locations to the DDC Block Status
Word and are completely interchangeable requiring no change to software.

9 8 7 6 5 4 3 2 1 0

11 Holt Integrated Circuits

Figure 5 - Holt BC Block Status Word

4.2.6 LOOPBACK WORD
The Loopback Word, contains the last word transmitted by the BC, when used with the 16-bit
time base or it contains Time Tag Bits 31-16, when used with the 32-bit time base. The DDC BC
only supports a 16-bit Time Tag and in that case is fully compatible with the Holt BC.

4.2.7 RT STATUS WORD
This field contains the RT status word received by the BC. In the case of RT-RT messages, this is
the Transmit RT Status Word.

4.2.8 TRANSMIT COMMAND WORD
This field is only used for RT-to-RT messages. In this case, then MCSB contains 8 additional
words.

4.2.9 RECEIVE RT STATUS WORD
This field is only used for RT-to-RT messages.

4.3 GENERAL PURPOSE QUEUE (GPQ)
The HI-613x BC architecture includes a General Purpose Queue, a 64-word circular buffer which
the BC can use to convey information to the external BC host. Various BC instruction op codes
push data values onto the queue, such as the Block Status Word for the last message, Time Tag
Counter values, immediate data values, or values stored in specific RAM addresses.

The BC General Purpose Queue Pointer 0x0038 (see Section 11.8 of the HI-6130 Datasheet) is
initialized with the default starting address 0x00C0 after reset. The queue is relocatable, so the
host may overwrite the default base address. Updated by the BC logic each time a data word is
pushed onto the queue, the pointer in register 0x0038 always points to the next storage
address in the queue to be written. The address pointer rolls over every 64th word written. If
the BCGPQ bit 13 is logic 1 in the BC Interrupt Enable Register, a BC interrupt is generated when
the General Purpose Queue Pointer rolls over from its ending address to its base address.

9 8 7 6 5 4 3 2 1 0

12 Holt Integrated Circuits

Figure 6 - Holt BC General Purpose Queue

The format, function, and operation of the Holt BC GPQ and the DDC GPQ is identical and
should require little or no changes to software. The only changes would be location of the BC
General Purpose Queue Pointer Register and possibly the location of the queue itself in SRAM.

Increasing
Memory
Address

BC General Purpose
Queue Pointer

reg 0x0038

GPQ Word 63

GPQ Word 0

BC GP Queue
in RAM

GPQ Words 1 - 62

HI-613x
Register
Space

13 Holt Integrated Circuits

5 APPLICATION SPECIFIC EXAMPLES

5.1 MAJOR AND MINOR FRAMES
This example demonstrates how to implement a very common avionics application that
involves the BC periodically polling Remote Terminals. The Holt BC provides several
mechanisms to implement message timing control that involves the use of major and minor
frames and control of inter-message gap times.

MINOR FRAME TIME

INTERMESSAGE
GAP TIME

TIME TO
NEXT MESSAGE

MESSAGE 1 MESSAGE 2 MESSAGE 3 FIRST MESSAGE OF
NEXT MINOR FRAME

Figure 7 - Minor Frame showing Inter-message Gap Time

MINOR FRAME
1

MINOR FRAME
2

MINOR FRAME
N

MINOR FRAME
1

MAJOR FRAME TIME

MINOR
FRAME
TIME

Figure 8 - Major Frame Contains Multiple Minor Frames

A minor frame will typically have a fixed duration such as 10ms, while a major frame will be
comprised of multiple minor frames. The periodicity of individual messages can then be
controlled by processing those messages in one or more minor frames allowing the user to
define highly deterministic bus traffic.

The example bus list shown below, illustrates one method of implementing Major/Minor
Frames using the Frame Timer to set the Minor Frame Time. The main bus list makes calls to
the minor frame subroutine and also to another subroutine that waits until the Frame Timer
counts down to zero. The Frame Timer can also be used to control the Major Frame Time by
using either the Time-to-Next Message or DLY Op Code to control the Minor Frames. The

14 Holt Integrated Circuits

examples below operate the same for the Holt BC as they would for the DDC Enhanced BC with
no software changes. The below examples assume a BC Instruction List Start Address of
0x1B70.

Table 5 - Start BC Instruction List

Address Opcode Condition Parameter Comments
0x1B70 LFT Always
0x1B71 0x000A 1000 us minor frame time called 5 times => 3ms Major Frame
0x1B72 SFT Always
0x1B73 0x0000 Start Frame Timer
0x1B74 CAL Always
0x1B75 0x1B82 Call MINOR1
0x1B76 CAL Always
0x1B77 0x1B8A Call NXTFRAME
0x1B78 CAL Always
0x1B79 0x1B82 Call MINOR1
0x1B7A CAL Always
0x1B7B 0x1B8A Call NXTFRAME
0x1B7C CAL Always
0x1B7D 0x1B82 Call MINOR1
0x1B7E WFT Always
0x1B7F 0x0000 Wait for frame time to expire
0x1B80 JMP Always
0x1B81 0x1B70 Jump to beginning of bus instruction list

Table 6 - Subroutine MINOR1 - Minor Frame of XEQ opcodes for messages

Address Opcode Condition Parameter Comments
0x1B82 XEQ Always
0x1B83 MSG1 MSG1 points to Message Control/Status Block for Message 1
0x1B84 XEQ Always
0x1B85 MSG2 MSG2 points to Message Control/Status Block for Message 2
0x1B86 XEQ Always
0x1B87 MSG3 MSG3 points to Message Control/Status Block for Message 3
0x1B88 RTN Always
0x1B89 0x0000 Subroutine Return

15 Holt Integrated Circuits

Table 7- Subroutine NXTFRAME - Wait for Frame Timer to Expire and Reload

Address Opcode Condition Parameter Comments
0x1B8A WFT Always
0x1B8B 0x0000 Wait for frame time to expire
0x1B8C LFT Always
0x1B8D 0x000A Reload 1000 µs minor frame time
0x1B8E SFT Always
0x1B8F 0x0000 Start new frame timer
0x1B90 RTN Always
0x1B91 0x0000 Subroutine Return

A third use of the Frame Timer adds a watchdog or failsafe mechanism for the BC Message
Sequence Engine. In this case, if the Frame Timer counts down to zero, then the BC will issue
an interrupt that protects against the case where the BC gets "lost" due to a corrupted pointer
or Op Code. If the operation of the BC processor gets corrupted such that this subroutine is not
executed, the frame timer will count down to zero, and the BC can be set to issue a BC EOF
interrupt.

Table 8 - NXTFRAME Subroutine Updated to add BC watchdog timer

Address Opcode Condition Parameter Comments
0x1B8A CFT Always
0x1B8B 0x0001 Compare Frame Timer to 100 µs
0x1B8C JMP GT/EQ FLAG
0x1B8D 0x1B8A Jump to beginning of NXTFRAME if the timer > 100 µs.
0x1B8E LFT Always
0x1B8F 0x000A Reload 1000 µs minor frame time
0x1B90 SFT Always
0x1B91 0x0000 Start new frame timer
0x1B92 RTN Always
0x1B93 0x0000 Subroutine Return

5.2 ASYNCHRONOUS MESSAGE INSERTION
The HI-613x Bus Controller provides a flexible means for scheduling major and minor frames,
allowing insertion of asynchronous messages or frames during frame execution. At the
completion of the currently executing message, and before the next message in the scheduled
frame is processed, the queued asynchronous message will be processed. Once the
asynchronous message or asynchronous message frame has been executed, the BC returns and
begins executing the scheduled frame where it left off.

It is also possible to configure a scheme that differentiates between high priority and low
priority asynchronous messages. In this case, the high priority messages are sent out
immediately after the currently executing message, while low priority asynchronous messages
will be sent only if time allows at the end of the minor frame. If low priority messages are

16 Holt Integrated Circuits

expected, then enough time should be added to the minor frame time to allow one or more low
priority asynchronous messages to be sent as required.

5.2.1 HIGH PRIORITY ASYNCHRONOUS MESSAGE INSERTION

The example shown in Table 9 is a modified version of the MINOR1 Frame shown previously. In
the example, the host processor will create a frame of one or more high priority asynchronous
messages and then set General Purpose Flag 3 (GP3) to have the BC to process the
asynchronous messages.

The host processor is required to fully load the message control/status blocks and any data
words to be transmitted to data blocks for the asynchronous message frame prior to setting the
GP3 flag. The conditional CAL instructs the BC to check if the host processor has set the GP3
flag. If so, the BC will execute the asynchronous message frame.

Table 9 - Example of High Priority Asynchronous Message Insertion into MINOR1 Frame

Address Opcode Condition Parameter Comments
0x1B82 XEQ Always
0x1B83 MSG1 MSG1 points to Message Control/Status Block for Message 1
0x1B84 CAL GP3_1

0x1B85 ASYNCH_HP

ASYNCH_HP points to frame of one or more High Priority
asynchronous messages. If General Purpose Flag 3 is set by
host, then call ASYNCH_HP subroutine.

0x1B86 XEQ Always
0x1B87 MSG2 MSG2 points to Message Control/Status Block for Message 2
0x1B88 CAL GP3_1

0x1B89 ASYNCH_HP

ASYNCH points to frame of one or more High Priority
asynchronous messages. If General Purpose Flag 3 is set by
host, then call ASYNCH_HP subroutine.

0x1B8A XEQ Always
0x1B8B MSG3 MSG3 points to Message Control/Status Block for Message 3
0x1B8C CAL GP3_1

0x1B8D ASYNCH_HP

ASYNCH points to frame of one or more High Priority
asynchronous messages. If General Purpose Flag 3 is set by
host, then call ASYNCH_HP subroutine.

0x1B8E RTN Always
0x1B8F 0x0000 Subroutine Return

Table 10 shows an example of the high priority message frame. This frame will execute two
high priority asynchronous messages and then clear GP3 before returning.

17 Holt Integrated Circuits

Table 10 - ASYNCH_HP subroutine will send one or more high priority asynchronous messages

Address Op Code Condition Parameter Comments
0x1B90 XEQ Always

0x1B91 ASYNC_MSG1
ASYNC_MSG1 points to Message Control/Status
Block for asynchronous message 1.

0x1B92 XEQ Always

0x1B93 ASYNC_MSG2
ASYNC_MSG2 points to Message Control/Status
Block for asynchronous message 2.

0x1B94 FLG Always
0x1B95 0x0800 Clear GP3
0x1B96 RTN Always
0x1B97 0x0000 Subroutine Return

5.2.2 LOW PRIORITY ASYNCHRONOUS MESSAGING
The simple example in Table 11 shows a modified version of the NXTFRAME subroutine. In this
case, the CFT Op Code is used to check if enough time is available at the end of the frame to
send one or more low priority asynchronous messages. If there is enough time, then the CAL
Op Code will call the ASYNCH_LP subroutine which is a frame of one or more low priority
messages. In this case, the user can initialize the frame, message control/status blocks, and
data blocks before setting GP4. The low priority asynchronous message frame would then clear
GP4 upon completion of the low priority asynchronous messages within.

Table 11 - NXTFRAME Subroutine modified to allow Low Priority Asynchronous Messages

Address Opcode Condition Parameter Comments
0x1B98 CFT Always
0x1B99 0x0007 If enough time left in frame send ASYCH message or Frame
0x1B9A JMP LT Flag

0x1B9B 0x1BA2
If not enough time then jump to WFT to wait for frame time
to expire

0x1B9C CAL GP4

0x1B9D ASYNCH_LP
ASYNCH_LP is frame of one or more low priority
asynchronous messages.

0x1B9E CFT Always
0x1B9F 0x0007 Check if enough time left to loop again
0x1BA0 JMP GT/EQ FLAG
0x1BA1 0x1B98 If yes then jump to beginning of NXTFRAME.
0x1BA2 WFT Always
0x1BA3 0x0000 Wait for frame time to expire
0x1BA4 LFT Always
0x1BA5 0x001E Reload 3000 µs minor frame time
0x1BA6 SFT Always
0x1BA7 0x0000 Start new frame timer
0x1BA8 RTN Always
0x1BA9 0x0000 Subroutine Return

18 Holt Integrated Circuits

5.2.3 LOW PRIORITY ASYNCHRONOUS MESSAGING - ALTERNATE METHOD

Another implementation of Low Priority Asynchronous Message is described below. This
method provides greater flexibility, but relies more on the host software to maintain state of
the bus list and frame times. Specifically, this method relies on the host software maintaining a
list of messages in each Minor Frame and therefore the frame time remaining at the end of the
frame can be calculated and stored in software. For this implementation a CAL op code with
the condition code set to NEVER is stored at the end of each Minor Frame as shown in Figure 9
below.

CAL Minor Frame
1

CAL Minor Frame
2

CAL Minor Frame
N HALT...

BC Instruction list
executes opcode and
parameter pairs

XEQ 1 XEQ 2 ... XEQ N CAL(Cnd_Never) RTN

Each minor frame has a
CAL instruction with

condition initially set to
“NEVER” before each

RTN opcode

Figure 9 - Low Priority Asynchronous Messages - Alternate Method

The CAL opcode in the Minor Frame is replaced with a CAL (ALWAYS) and the address of the
asynchronous frame is provided when the asynchronous messages are desired to go out onto
the bus. The DSZ Opcode in the asynchronous frame attempts to decrement the value (initially set to 1)
stored at the first unused address in the Message Control/Status Block in RAM. If it is already zero the
DSZ Opcode will cause the next opcode is skipped. This ensures that the messages in the Asynchronous
Frame are only executed one time. The next time the host wishes to send the low priority asynchronous
frame, it must first reload the MCSB memory location to 0X0001. The first unused address in the MCSB
is at MCSB memory offset + 10. This method assumes that all asynchronous MCSB's are configured with
pointer parameters that are modulo 16. In this case, each MCSB is 16 words only 10 of which are used.

19 Holt Integrated Circuits

Asynchronous frame

DSZ 1 A. XEQ 1 ... DSZ N A. XEQ N RTN

Figure 10 - Asynchronous Frame

5.3 CONDITIONAL MESSAGING
In some applications it may be desirable to execute a message or minor frame conditionally.
For simple applications with just a few conditional messages, a specific General Purpose Flag
can easily be used as the condition code for an XEQ or CAL Opcode as shown in the previous
examples. However, since there is a limited number of general purpose flags available, it may
be desirable to combine multiple General Purpose Flags to allow additional messages or
frames. The simplified example below uses GPF[4:2] as Binary Coded Decimal format allowing
the execution of up to 4 messages or frames using only three General Purpose Flags.

In order to accomplish this, the JMP Op Code is used along with conditional branching. In this
case, the most significant bit (GPF4) is used as an enable bit to enter the conditional branching
instruction set. If GP4 is not set, then the code will return to the beginning of the minor frame.
If GP4 is set (e.g GP4_1 is true), then the BC will evaluate the remaining two bits to send the
appropriate message according to Table 12.

It should be noted that General Purpose Flags 0 and 1 are typically used for Fame Timer and
Message Timer comparisons and may not be available to the user. However, implementing an
expanded version of the scheme as described above would allow the remaining 6 General
Purpose Flags to be used which could support 32 possible outcomes with an enable bit or 64
possible outcomes if the enable bit is not used. The conditional messages shown in Table 12
could be also be conditional frames if CAL op codes are used rather than XEQ op codes.

Table 12 - Conditional Messaging Using GPF(4:2)

GP4 GPF3 GPF2
Conditional

Message
1 1 1 4
1 1 0 3
1 0 1 2
1 0 0 1

20 Holt Integrated Circuits

Table 13 shows an example Minor Frame with three synchronous messages and up to 4
conditional messages which can be executed by setting a specific bit pattern in GPF(4:2). It
should be noted that in HI-613x memory each BC instruction list location is actually two 16 bit
words. One word for the op code and condition code and another 16-bit word for the
parameter. The actual memory address for the JMP op code will need to be adjusted
accordingly.

Table 13 - Conditional Message/Frame Execution Example

Memory
Location

Op
Code Condition Parameter/Address Comments

1 XEQ Always MSG1 Synchronous Message
2 XEQ Always MSG2 Synchronous Message
3 XEQ Always MSG3 Synchronous Message
4 JMP GPF4_1 +2 Jump Ahead 2 Memory Locations
5 JMP GPF4_0 -4 Jump Back to beginning of Frame
6 JMP GPF3_0 +2 Jump Ahead 2 Memory Locations
7 JMP GPF3_1 +3 Jump Ahead 3 Memory Locations
8 JMP GPF2_0 +4 Jump Ahead 4 Memory Locations
9 JMP GPF2_1 +6 Jump Ahead 6 Memory Locations

10 JMP GPF2_0 +8 Jump Ahead 8 Memory Locations
11 JMP GPF2_1 +10 Jump Ahead 10 Memory Locations
12 XEQ Always Conditional MSG1 Message 1 will execute if GPF(4:2) are 100
13 FLG Always Clear all flags
14 JMP Always -13 Jump Back to beginning of Frame
15 XEQ Always Conditional MSG2 Message 2 will execute if GPF(4:2) are 101
16 FLG Clear all flags
17 JMP Always -16 Jump Back to beginning of Frame
18 XEQ Always Conditional MSG3 Message 3 will execute if GPF(4:2) are 110
19 FLG Clear all flags
20 JMP Always -19 Jump Back to beginning of Frame
21 XEQ Always Conditional MSG4 Message 4 will execute if GPF(4:2) are 111
22 FLG Clear all flags
23 JMP Always -22 Jump Back to beginning of Frame

5.4 DATA BLOCK DOUBLE BUFFERING
As previously mentioned many BC applications involve the need to receive or send the same
parameter(s) at a periodic rate. In the case of data received from the Remote Terminal, the BC
engine places the data in the data blocks associated with each message. For transmitted data,
the host processor software is responsible for filling data blocks.

21 Holt Integrated Circuits

The host application software may require access to the latest version of a particular parameter
asynchronously to the process of the BC receiving the data from the RT. It will typically be
required to be able to ensure data consistency. This means that for a data sample, the
handshake between the host and the Holt BC must ensure that the host does not read a
mixture of new data and previously received older data within a data block.

For the case described above it is common to use double buffering to guarantee data
consistency. For a Bus Controller receiving data, the BC can be configured to automatically
“ping-pong” between two data blocks every time a message is processed. The Holt BC supports
the use of the Execute and Flip (XQF) instruction to provide an autonomous mechanism for
double buffering. Using the XQF instruction, the BC can be configured to alternate between two
blocks of received data for the same message.

XQF

MCSB Pointer Control Word

Command Word

MCSB 0 @ 0xXX00

Data Block
Pointer

TTNM

TTW

BSW

LBW

RT Status

:

Data Block 0

Control Word

Command Word

MCSB 1 @ 0xXX10

Data Block
Pointer

TTNM

TTW

BSW

LBW

RT Status

:

Data Block 1

Figure 11 - Execute and Flip (XQF) Op Code for Double Buffering

As shown in Figure 11, each time the message defined by the Control/Status block at 0xXX00 is
processed, the pointer parameter associated with the XQF op code may be defined to toggle its
bit 4. This will result in the pointer referencing the Control/Status block at location 0xXX10 the
next time that the message is processed.

22 Holt Integrated Circuits

In order to reduce the overall size of the BC instruction list and control/status block code size, it
is recommended to create a subroutine to process a particular message. The subroutine may
then be executed in multiple minor frames within a major BC frame. The BC instruction code
shown in Table 14 demonstrates the use of the XQF instruction to implement double buffering.

Table 14 - Example of Double Buffering Using XQF Instruction

Address
Mnemonic

Op
Code Condition

Parameter/
Address Comments

MSG1XQF XQF GP3_0

Subroutine start. Process message XQF Op Code. The
condition for the XEQ is GP3 = 0. The first time this line
is executed, the control/status block will be pointer to
MCSB0. Assuming that GP3 is TRUE, (i.e., auto-toggling
is enabled), then pointer to MCSB0 will toggle to
MCSB1 or MCSBx <-MCSBx XOR 0x0010 = MCSB1

 MCSBx
 JMP BAD MESSAGE If BAD MESSAGE = TRUE, jump to "MSGERROR"
 FAULT

 RTN GP3_0
If GP3_0 is true, auto-toggling is enabled. Return from
Subroutine.

 0X0000

 FLG Always

If GP3_0 is false, auto-toggling is disabled. Set GP4, to
inform host that message was received while the host
was reading the Rx Message Block.

 0X0010
 RTN Always Subroutine Return
 0x0000

MSGERROR PSM Always
Push value of BC instruction list on GPQ to inform host
which message failed.

 START

 PBS Always
Push messages Block Status Word on GPQ in indicate
which faults.

 0X0000
 IRQ Always Issue IRQ to host processor indicating message failure.
 Bit Pattern
 RTN Always Subroutine Return
 0x0000

To guarantee data consistency, the host should do the following:

1. Set the general purpose flag GP3 by writing to the BC General Purpose Flag Register.
This temporarily disables the BC from auto-toggling control/status blocks and received
data blocks while the host is accessing the received data.

2. Read the current value of the control/status block pointer, which is stored at
address = MSG1XQF + 1.

23 Holt Integrated Circuits

3. Next, compute the pointer of the message control/status block for the most recently

received message to that particular RT/sub address, by the equation:

 MCSBx ← [MSG1XQF + 1] XOR 0x0016

4. To ensure that the most recently processed message was valid, read and verify the value

of the message’s Block Status Word.
5. If the message was valid, the host should then read the received data block.
6. After the host has read the data block, the status of GPF4 in the BC Condition Code

Register should be read to determine if a message was received, while the host was
reading the previous data block. If GPF4 is set indicating a message was received, then
the host should toggle the control/status block pointer by the equation:

 MCSBx ←MCSBx XOR 0x0010

7. Clear GP4 by writing to the BC General Purpose Flag Register.

8. Finally, to re-enable auto-toggling of the message’s control/status blocks and data
blocks, the host should clear GP3 by writing to the BC General Purpose Flag Register.

In the case of BC-to-RT commands, the host processor has full control over the data blocks that
will be transmitted to the RT. Once a data block has been written, then the host can toggle the
data block pointer for the XEQ instruction. XEQ rather than XQF should be used for BC-to-RT
transfers since the host software is in control over the data block pointer toggling.

5.5 BUS SWITCHING AND RETRY STRATEGY
The BC Control Word of the Message Control/Status Block of each message allows the host to
enable retries on a message by message basis. The BC Configuration Register allows the user to
globally define retry behavior such as how many retries and if they occur on the alternate bus
or not.

The HI-613x BC instructions can be used for combining message retry and bus switching
strategies. If the BC determines that a particular RT has failed, it can automatically switch the
message permanently from the original bus to the alternate bus saving BC bandwidth by
eliminating the need to retry messages on failed RT channels. The XQF instruction can be used
to implement an autonomous version of bus switching.

The example in Table 15 shows how to use the XQF Op Code to implement an autonomous bus
switching scheme.

24 Holt Integrated Circuits

Table 15 - Example of Channel Switching using XQF Op Code

Address
Label

Op
Code Condition

Parameter/
Address Comments

 FLG
 0x1000 Initialize by clearing General Purpose Flag 4 (GPF4)

MSG1 XQF BAD MESSAGE

Execute the message, allowing one retry for a failed
message on the original bus. The “flip” condition is “BAD
MESSAGE.” If a “flip” occurs, the new MCSB pointer will be:
MCSBB = MCSBA XOR 0x0010

 MCSBA
 JMP GOOD MESSAGE If message was successful, jump to next message
 NEXT

 JMP GP4_1

Conditional jump to fault subroutine if the GP4 general
purpose flag bit was set. For this instruction, if GP4 is set,
this indicates that the message had failed retries on both
buses.

 ERROR
 FLG Always Set GP4 (unconditional)
 0X0010

 JMP Always
Retry the message using the new MCSB which will try the
message on the alternate bus.

 MSG1

ERROR PSI Always
Push value of BC instruction list on GPQ to inform host of
messages failure on both buses

 MSG1

 PBS Always
Push messages Block Status Word on GPQ in indicate which
faults.

 0X0000

 IRQ Always
Issue IRQ to host processor indicating message failure on
both buses.

 Bit Pattern
NEXT Next Message

5.6 BULK DATA TRANSFERS
Another common type of application is the transfer of large data structures such as software or
firmware downloads, sensor data, moving map data, or audio. The Holt BC separates 1553 data
from the control and status information. The main benefit of this is that 1553 data words to be
transmitted or received can be placed into contiguous memory. The use of contiguous memory
for the data block structures helps facilitate bulk transfers to or from the HI-613x shared RAM
by processor burst reads/writes. This simplifies the host software and greatly improves
performance and processor utilization.

Figure 12 illustrates how to implement bulk data transfers using contiguous data blocks. The
diagram shows how to implement double buffering on a larger scale, by dividing a bulk data
structure into two sub-structures. These are designated as the “active” and “inactive. By “ping-
ponging” between two separate large contiguous blocks, the HI-613x Bus Controller can
transfer one block over the 1553 bus, while the host processor accesses the inactive data block.
An IRQ op code can be used to signal the host that one of the two blocks has been transferred.

25 Holt Integrated Circuits

MCSB 0-1 Data Block 0-1

MCSB 0-2 Data Block 0-2

MCSB 0-N Data Block 0-N

MCSB 1-1 Data Block 1-1

MCSB 1-2 Data Block 1-2

MCSB 1-N Data Block 1-N

•
•
•

•
•
•

Active half of
overall data to
be transferred

Inactive half of
overall data to
be transferred

Figure 12 - Bulk Data Transfers Using Contiguous Data Structures

5.7 DATA LOGGING USING THE GENERAL PURPOSE QUEUE (GPQ)
In addition to logging failed messages, The Bus Controller General Purpose Queue provides a
way for the BC to convey other information to the external host. Numerous BC op codes push
various data onto the queue, including time tag count, data values, message Block Status Word
or the data at specific RAM address locations. This allows a convenient and flexible way for the
host processor to read trend data for specific messages or parameters from the GPQ. The
example shown below demonstrates the BC logging and time stamping of a particular 16-bit
parameter. This method could easily be extended to support a larger number of parameters.

26 Holt Integrated Circuits

Table 16 - Example of Data Logging to the General Purpose Queue

Op
Code Condition

Parameter/
Address Comments

XEQ Always
Execute a transmit message to tell the RT to transmit
a parameter designated by the label 0x123A.

 MCSB

PSI Always
Push Immediate Value of 0x123A on the GPQ as the
label identifier of the parameter.

 0x123A

PSM Always

Push the received data word on the GPQ. The
address of the data word within the message data
block is used as the PSM Op codes Parameter.

Data Word
Address

PTT Always
Timestamp the logged parameter by pushing the
Time Tag Value onto the GPQ

5.8 USE OF EXTERNAL TRIGGER
The HI-613x Bus Controller can be used to synchronize the time tags of multiple Remote
Terminals on a 1553 bus. In this case, the BC’s time tag register value can be sent as the data
word using the Synchronize mode command. This capability is enabled by setting BC Time Tag
Synchronize Enable (TTSYNEN Bit 3) of BC (Bus Controller) Configuration Register (0x0032) to a
logic "1" and also setting the TXTTMC17 Bit 15 of the BC Control Word.

This capability described above can also be extended to support synchronizing the time tags of
multiple BCs by using the BCTRIG input signal. For the purpose of time synchronization, the
BCTRIG input from any number of Bus Controllers can be connected to the output of a common
time source.

Table 17 - BC Use of External Trigger

Address
Label

Op
Code Condition

Parameter
/ Address Comments

 WTG Always

Wait for a rising edge of the HI-613x BCTRIG
pin before continuing execution of the next op
code in the BC instruction list.

 0x0000

 LTT Always
Load the Time Tag Register with 0x0000 to
reset. Another time value could also be used.

 0x0000

 XEQ Always

Execute Message. Synchronize (with data
word) mode code 17 command. This message
could also be sent as a broadcast command.

 MSG_MC17
NEXT Next Message

27 Holt Integrated Circuits

5.9 N-ITERATION REPEATING EXECUTION LOOPS
The HI-613x Bus Controller supports a unique feature that enables users to implement N-
Iteration loop execution using the DSZ, WMI, and WMP op codes. In this case a fixed memory
location is used to store the value of 'N'. The default memory location in RAM is 0x0050. This
value can be changed by use of the WMP op code but the memory location must be greater
than 0x004F.

If the condition code evaluates as true, the WMI op code will write the parameter specified
immediate value to 0x0050 or the memory address specified by the last WMP instruction
performed. This allows the user to initialize the memory location with the value of 'N'.

For the DSZ op code, if the condition code evaluates true, the value stored at the memory
address specified by the parameter word is decremented. If the new value is non-zero, the next
instruction is executed. If the decremented value is zero, the next instruction is skipped.

Table 18 - N-Iteration Loop Execution Example

Address
Label

Op
Code Condition

Parameter/
Address Comments

 WMP Always

Set WMI pointer with the immediate value of
0x0A00. Default WMI pointer value is 0x0050
and it must be set to a value > 0x0049.

 0x0A00

 WMI Always
Set the number of iterations to N, in this case
0x000A so that the loop will execute 10 times.

 0x000A
 CAL Always Call subroutine LOOP
 LOOP
NEXT Next Message

LOOP XEQ Always LOOP Subroutine: Execute Message 1
 MSG1

 DSZ Always
Decrement value at 0x0A00 and check if > 0, if
so then skip the next JMP instruction.

 0x0A00
 JMP Always JUMP to beginning of LOOP subroutine
 LOOP
 RTN Always Return from subroutine if N = 0
 0x0000

28 Holt Integrated Circuits

6 ADDITIONAL RESOURCES
• Holt Evaluation Kits are available for most devices that include complete and easy to use

demonstration software, documentation, schematics, and Bills of Materials. Versions
are available with low level sample software and API level software.

• HI-6130 / HI-6131 / HI-6132 MIL-STD-1553 / MIL-STD-1760 3.3V BC / MT / RT Multi-
Terminal Device Datasheet

• MAMBATM: HI-6135 3.3V MIL-STD-1553 / MIL-STD-1760 Compact Remote Terminal with
SPI Host Interface Datasheet

29 Holt Integrated Circuits

7 Revision History

Revision Date Description of Change
AN-571, Rev. New 01/26/16 Initial Release

	INTRODUCTION
	DEVICE INITIALIZATION
	Initialization Steps Compared

	Once the registers are initialized the remaining steps are virtually identical. When porting software from DDC EMACE to Holt HI-613x, the user should take care to review the memory locations in SRAM of the Message Control/Status Block and Data Block ...
	MEMORY MAP
	BC MESSAGE SEQUENCE CONTROL
	BC INSTRUCTION SET
	MESSAGE CONTROL/STATUS BLOCK (MCSB)
	BC CONTROL WORD
	COMMAND WORD
	DATA BLOCK ADDRESS POINTER
	TIME TO NEXT MESSAGE WORD
	BLOCK STATUS WORD (BSW)
	LOOPBACK WORD
	RT STATUS WORD
	TRANSMIT COMMAND WORD
	RECEIVE RT STATUS WORD

	GENERAL PURPOSE QUEUE (GPQ)

	APPLICATION SPECIFIC EXAMPLES
	MAJOR AND MINOR FRAMES
	ASYNCHRONOUS MESSAGE INSERTION
	HIGH PRIORITY ASYNCHRONOUS MESSAGE INSERTION
	LOW PRIORITY ASYNCHRONOUS MESSAGING
	LOW PRIORITY ASYNCHRONOUS MESSAGING - ALTERNATE METHOD

	CONDITIONAL MESSAGING
	DATA BLOCK DOUBLE BUFFERING
	BUS SWITCHING AND RETRY STRATEGY
	BULK DATA TRANSFERS
	DATA LOGGING USING THE GENERAL PURPOSE QUEUE (GPQ)
	USE OF EXTERNAL TRIGGER
	N-ITERATION REPEATING EXECUTION LOOPS

	ADDITIONAL RESOURCES
	Revision History

