

Galvanically Isolated ARINC 429 Line Receiver with Integrated DO-160 Level 3 Lightning Protection

May 2018

GENERAL DESCRIPTION

The HI-8460 and HI-8461 are galvanically isolated single ARINC 429 line receivers with internal lightning protection circuitry. The devices are available in compact 16-pin QFN and 8-pin SOIC packages. Capacitive isolation and power regulation provide 800V isolation between the line receiver and the logic interface. This is an ideal device for systems that must tolerate different grounds. Although power and ground are isolated between the line receiver and the logic interface, the IC only requires one VDD and one GND. This allows the SO-8 version of HI-8460 to be pin for pin compatible with the HI-8450, HI-8588 and HI-8591, making it easy to add galvanic isolation and lightning level 3 compliance to existing sockets.

The internal lightning protection circuitry ensures compliance with RTCA/DO-160G, Section 22 Level 3 Pin Injection Test Waveform Set A (3 & 4), Set B (3 & 5A) and Set Z (3 & 5B) without the use of any external components. Pin surge levels for Level 3 are summarized below.

Waveform 3	Waveform 4	Waveform 5A	Waveform 5B	
VOC/ISC	VOC/ISC	VOC/ISC	VOC/ISC	
600V/24A	300V/60A	300V/300A	300V/300A	

The devices are designed to operate from a 3.3V supply. Each receiver channel translates incoming ARINC 429 data bus signals to a pair of TTL / CMOS outputs.

The TESTA and TESTB inputs bypass the analog inputs for testing purposes. They force the receiver outputs to the specified ZERO, ONE or NULL state. The ARINC inputs are ignored when the devices are in test mode.

The HI-8461 produces a low output when the TESTA and TESTB inputs are held high, whereas the HI-8460 produces a high impedance output when the TESTA and TESTB inputs are held high.

The parts are available in Industrial -40°C to +85°C, or Extended -55°C to +125°C temperature ranges. Optional burn-in is available on the extended temperature range.

FEATURES

- Airbus ABD0100H specification compliant Galvanically isolated ARINC 429 receiver providing 800V isolation between the line receiver and the logic interface
- Drop-in compatible with HI-8450/51, HI-8588 and HI-8591
- Internal lightning protection circuitry ensures compliance with RTCA/DO-160G, Section 22 Level 3 Pin Injection Test Waveform Set A (3 & 4), Set B (3 & 5A) and Set Z (3 & 5B)
- Direct connection to ARINC 429 bus with no external components
- 3.3V single supply operation
- · Ultra low supply current
- Test inputs bypass analog inputs and force digital outputs to a one, zero, or null state
- Industrial and Extended temperature ranges
- · Burn-in available

PIN CONFIGURATION (TOP VIEW

8-PIN PLASTIC SOIC - NB

Table 1. Function Table

ARINC INPUTS INA - INB	TESTA	TESTB	OUTA	OUTB
-2.5 to +2.5V	0	0	0	0
< -6.5V	0	0	0	1
> +6.5V	0	0	1	0
х	0	1	0	1
х	1	0	1	0
х	1	1	HI-Z (1)	HI-Z (1)
х	1	1	0 (2)	0 (2)

Note (1): HI-8460 only. Note (2): HI-8461 only.

FUNCTIONAL DESCRIPTION

Figure 1 shows the general architecture of the galvanically isolated ARINC 429 receiver. The inputs INA and INB may be connected directly to the ARINC 429 bus. Internal lightning protection circuitry ensures

compliance with RTCA/DO-160G, Section 22 Level 3 Pin Injection Test Waveform Set A (3 & 4), Set B (3 & 5A) and Set Z (3 & 5B) without the use of any external components.

The inputs go into a differential amplifier where the signal is compared to internally generated levels. The amplifier output signal is encoded, then capacitively coupled across the galvanic isolation barrier. On the host interface side, the signal is decoded. The status of the ARINC receiver input is then latched. A Null input resets the latches and a One or Zero input sets the latches.

The logic at the output is controlled by the test signal which is generated by the logical OR of the TESTA and TESTB pins. This allows control logic to be connected to the test inputs for system self-test purposes. If TESTA and TESTB are both One, the outputs are pulled low (HI-8461 only). In the case of HI-8460, if TESTA and TESTB are both One, the outputs are high impedance (HI-Z).

BLOCK DIAGRAM

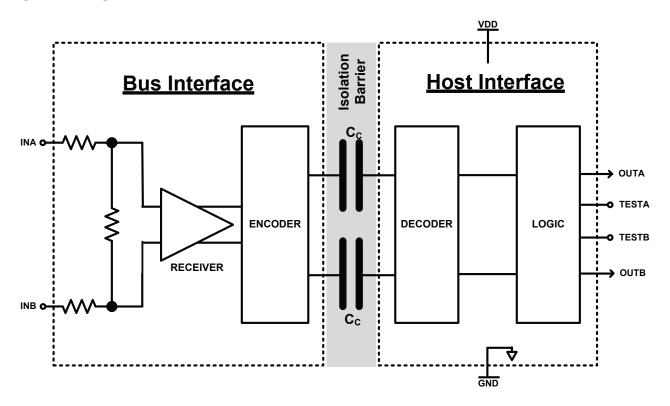


Figure 1. Galvanically Isolated Line Receiver Block Diagram

PIN DESCRIPTIONS

Table 2. Pin Descriptions

Symbol	Function	Description	
VDD	POWER	+3.3V supply voltage	
TESTA	LOGIC INPUT	Test input	
INB	ARINC INPUT	Receiver negative input	
INA	ARINC INPUT	Receiver positive input	
GND	POWER	Ground supply voltage	
OUTA	LOGIC OUTPUT	Receiver "ONE" output	
OUTB	LOGIC OUTPUT	Receiver "ZERO" output	
TESTB	LOGIC INPUT	Test input	
NC	Not connected	Not connected Not connected	

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{DD})	-0.3V to +7.0V
Logic input voltage range	-0.3V to VDD + 0.6V
Voltage at pins INA and INB	-1,000V to +1,000V
Power dissipation at 25°C	350mW
Common-Mode Input Voltage (with respect to GND)	+/- 1,000V
Solder Temperature (reflow)	260°C
Storage Temperature	-65°C to +150°C

RTCA/DO-160G, Section 22 pin injection					
Waveform	Voc/Isc				
3	1,000V/40A				
4	500V/100A				
5A	500V/500A				
5B	500V/500A				

RECOMMENDED OPERATING CONDITIONS

Supply Voltages			
V _{DD}	+3.3V	±	5%
Temperature Range			
Industrial Screening	40°C t	0 +8	35°C
Extended Temp Screening	-55°C to	+12	25°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

ELECTRICAL CHARACTERISTICS

Table 3. DC Electrical Characteristics

 V_{DD} = +3.3V ± 5%, GND = 0V, T_A = Operating Temperature Range (unless otherwise stated)

Param	neters	Symbol	Test Conditions	Min	Тур	Max	Units
ARINC INPUTS							
Input Voltage	ONE or ZERO	V _{DIN}	Differential Input voltage	6.5	10	13	V
	NULL	V _{NIN}	Differential Input voltage			2.5	V
	Common mode	V _{COM}	with respect to GND			± 800	V
Input Resistance	INA to INB	R _{DIFF}	Dynamic		28		kΩ
	Input to $GND_{\mathtt{DD}}$	$R_{\scriptscriptstyle{SUP}}$		10 ⁹			kΩ
Input Hysteresis		V_{HYS}	3.3V	0.15	0.4		V
Input Capacitance	ARINC differential	C _{AD}			19	30	pF
	ARINC single ended to GND	C _{AS}				30	pF
DC Isolation Voltage	All inputs with respect to bus pins					± 800	V
TEST INPUTS							
Logic Input Voltage	High	V _{IH}		70%V _{DD}		V _{DD} + 0.3	V
	Low	V _{IL}		-0.3		30%V _{DD}	V
Logic Input Current	Sink	I _{IH}	$V_{IH} = V_{DD}$			200	μA
	Source	I _{IL}	V _{IL} = 0V	-1.0			μA
OUTPUTS							
Logic Output Voltage (CMOS)	High	V _{OHC}	I _{OH} = -1μA	90%			V _{DD}
	Low	V _{OLC}	Ι _{οL} = 1μΑ			10%	V _{DD}
SUPPLY CURRENT							
V _{DD} Current (HI-8460, HI-8461)		I _{DD}	V _{DD} = 3.3V		200		μA

Table 4. AC Electrical Characteristics

 $V_{_{DD}}$ = +3.3V ± 5%, GND = 0V, $T_{_{A}}$ = Operating Temperature Range (unless otherwise stated)

Parameters		Symbol	Test Conditions	Min	Тур	Max	Units
SWITCHING CHARACTERISTICS							
Propagation Delay	IN to OUT	t _{LH}	C _L = 50pF		0.75	1.5	μs
		t _{HL}	C _L = 50pF		0.75	1.5	μs
Output Rise Time		t _R	10% to 90%, C _L = 50pF		8	16	ns
Output Fall Time		t _F	90% to 10%, C _L = 50pF		8	16	ns
Propagation Delay	TEST to OUT	t _{TOH}	C _L = 50pF		50	125	ns
		t _{TOL}	C _L = 50pF		50	125	ns
Test Mode Operating Frequency			C _L = 50pF			25	MHz

LIGHTNING INDUCED TRANSIENT VOLTAGE WAVEFORMS

Waveform 3.

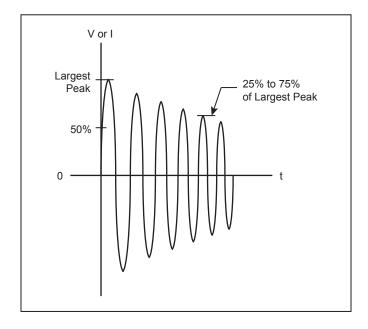


Figure 2. DO-160G Lightning Induced Transient Voltage Waveform 3. Voc = 600V, Isc = 24A, Frequency = 1MHz ± 20%.

Waveform 4.

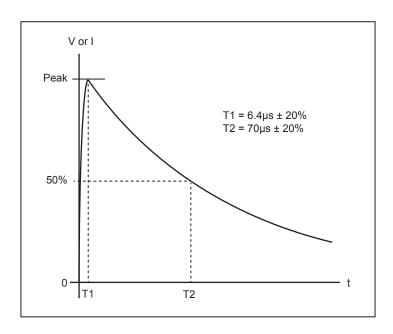
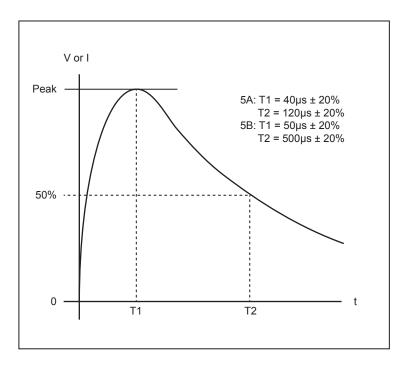
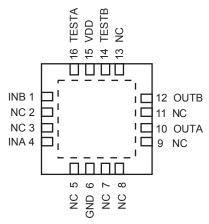
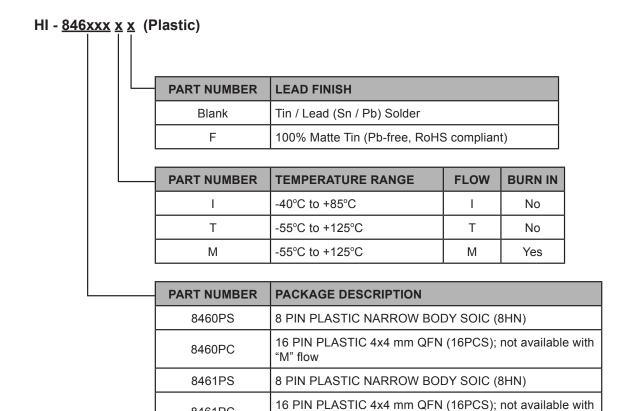


Figure 3. DO-160G Lightning Induced Transient Voltage Waveform 4. Voc = 300V, Isc = 60A.

Waveform 5.

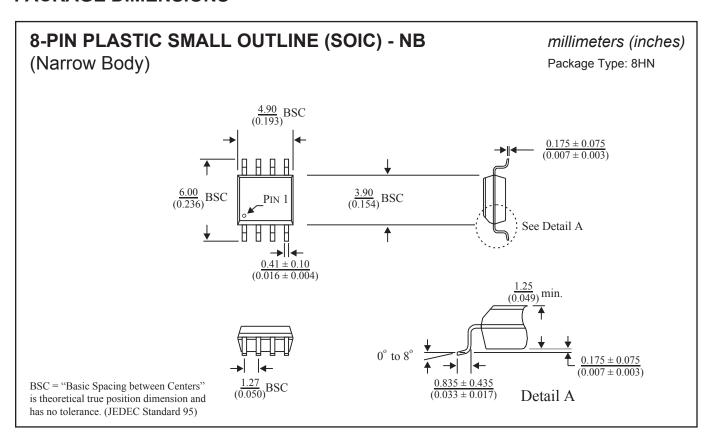



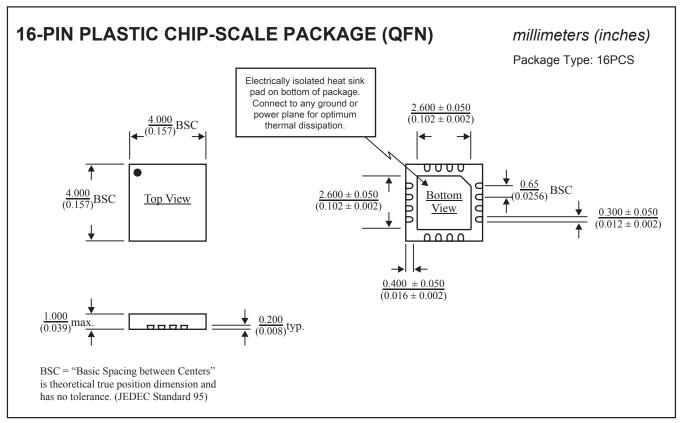

Figure 4. DO-160G Lightning Induced Transient Voltage Waveforms 5A and 5B. Voc = 300V, Isc = 300A.

ADDITIONAL PACKAGES

16-Pin 4mm x 4mm QFN

ORDERING INFORMATION


"M" flow


8461PC

REVISION HISTORY

Revision Date		Date	Description of Change
DS8460 Rev. New. 03/17/17		03/17/17	Initial Release
Rev. A 05/17/17		05/17/17	Add "Ultra Low Supply Current" to Features.
Rev. B 05/22/18		05/22/18	Update Logic Output Voltage and Propagation Delays in "Electrical Characteristics".

PACKAGE DIMENSIONS

