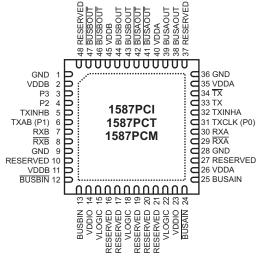


January 2020

MIL-STD-1553 / 1760 3.3V Dual Transceiver with Integrated IP Security Module

DESCRIPTION

The HI-1587 is an ultra-low power MIL-STD-1553 dual transceiver designed to meet all requirements of the MIL-STD-1553 and MIL-STD-1760 specifications. The device is designed to provide the transceiver interface between the bus isolation transformers and an FPGA with instantiated Holt IP and features an integrated IP security module necessary to enable the IP. This eliminates the need for a traditional external IP dongle chip, commonly used with other IP solutions.


The HI-1587 is also the first MIL-STD-1553 transceiver to feature 1.8V, 2.5V and 3.3V compatible digital I/O, making it easier to interface with a broad range of FPGAs.

The transmitter takes complementary CMOS / TTL Manchester II bi-phase data and converts it to differential voltages suitable for driving the bus isolation transformer. Separate transmitter inhibit control signals are provided for each bus. The receiver section of the each bus converts the 1553 bus bi-phase analog signals to complementary CMOS / TTL data suitable for input to the IP Core Manchester decoder.

APPLICATIONS

- MIL-STD-1553 Terminals
- Flight Control and Monitoring
- Radar Systems
- ECCM Interfaces
- Stores Management
- Test Equipment
- Sensor Interfaces
- Instrumentation

PIN CONFIGURATION

HI-1587

48 Pin Plastic 6mm x 6mm Chip-Scale Package (QFN)

FEATURES

- Compliant to MIL-STD-1553A and B, MIL-STD-1760
- 3.3V single supply operation for 3.3V systems
- 1.8V, 2.5V and 3.3V compatible digital I/O
- Smallest transceiver footprint available in 6mm x 6mm 48-pin plastic chip-scale package (QFN)
- Includes integrated MIL-STD-1553 IP security module

PIN DESCRIPTIONS

PIN	SYMBOL	FUNCTION	FUNCTION DESCRIPTION				
1	GND	power supply	Ground				
2	VDDB	power supply	+3.3 volt power for transceiver B				
3	P3	digital input	Connect to IP output P3 on FPGA.	Internal pull-down resistor			
4	P2	digital output	Connect to IP input P2 on FPGA.				
5	TXINHB	digital input	Transmit inhibit, bus B. If high BUSBOUT, BUSBOUT disabled	. Internal pull-down resistor			
6	TXAB (P1)	digital input	Transmit select (BUSA or BUSB). Connect to IP output P1 on TXAB = 0 selects BUSA. TXAB = 1 selects BUSB.	FPGA. Internal pull-down resistor			
7	RXB	digital output	Receiver B output, non-inverted				
8	RXB	digital output	Receiver B output, inverted				
9	GND	power supply	Ground				
10	RESERVED	-	MUST be open-circuit. DO NOT connect.				
11	VDDB	power supply	+3.3 volt power for transceiver B				
12	BUSBIN	analog input	MIL-STD-1553 bus input B, negative signal				
13	BUSBIN	analog input	MIL-STD-1553 bus input B, positive signal				
14	VDDIO	power supply	Power for digital I/O. Supports 1.8V, 2.5V or 3.3V.				
15	VLOGIC	power supply	+3.3 volt power for digital logic				
16	RESERVED	-	MUST be open-circuit. DO NOT connect.				
17	RESERVED	-	MUST be open-circuit. DO NOT connect.				
18	VLOGIC	power supply	+3.3 volt power for digital logic				
19	RESERVED	-	MUST be open-circuit. DO NOT connect.				
20	RESERVED		MUST be open-circuit. DO NOT connect.				
20	RESERVED		MUST be open-circuit. DO NOT connect.				
22	VLOGIC	power supply	+3.3 volt power for digital logic				
23	VDDIO	power supply	Power for digital I/O. Supports 1.8V, 2.5V or 3.3V.				
23	BUSAIN	analog input	MIL-STD-1553 bus input A, negative signal				
24	BUSAIN		MIL-STD-1553 bus input A, positive signal				
25	VDDA	analog input	+3.3 volt power for transceiver A				
20	RESERVED	power supply					
			MUST be open-circuit. DO NOT connect.				
28 29	GND RXA	power supply	Ground				
		digital output	Receiver A output, inverted				
30	RXA	digital output	Receiver A output, non-inverted				
31	TXCLK (P0)	digital input	Transmit clock. Connect to IP output P0 on FPGA.	Internal pull-down resistor			
32	TXINHA	digital input	Transmit inhibit, bus A. If high BUSAOUT, BUSAOUT disabled				
33	TX	digital input	Transmitter digital data input, non-inverted.	Internal pull-down resistor			
34	TX	digital input	Transmitter digital data input, inverted.	Internal pull-down resistor			
35	VDDA	power supply	+3.3 volt power for transceiver A				
36	GND	power supply	Ground				
37	RESERVED	-	MUST be open-circuit. DO NOT connect.				
38	BUSAOUT	analog output	MIL-STD-1553 bus driver A, positive signal				
39	BUSAOUT	analog output	MIL-STD-1553 bus driver A, positive signal				
40	VDDA	power supply	+3.3 volt power for transceiver A				
41	BUSAOUT	analog output	MIL-STD-1553 bus driver A, negative signal				
42	BUSAOUT	analog output	MIL-STD-1553 bus driver A, negative signal				
43	BUSBOUT	analog output	MIL-STD-1553 bus driver B, positive signal				
44	BUSBOUT	analog output	MIL-STD-1553 bus driver B, positive signal				
45	VDDB	power supply	+3.3 volt power for transceiver B				
46	BUSBOUT	analog output	MIL-STD-1553 bus driver B, negative signal				
47	BUSBOUT	analog output	MIL-STD-1553 bus driver B, negative signal				
48	RESERVED	-	MUST be open-circuit. DO NOT connect.				

Table 1. Pin Descriptions

BLOCK DIAGRAM

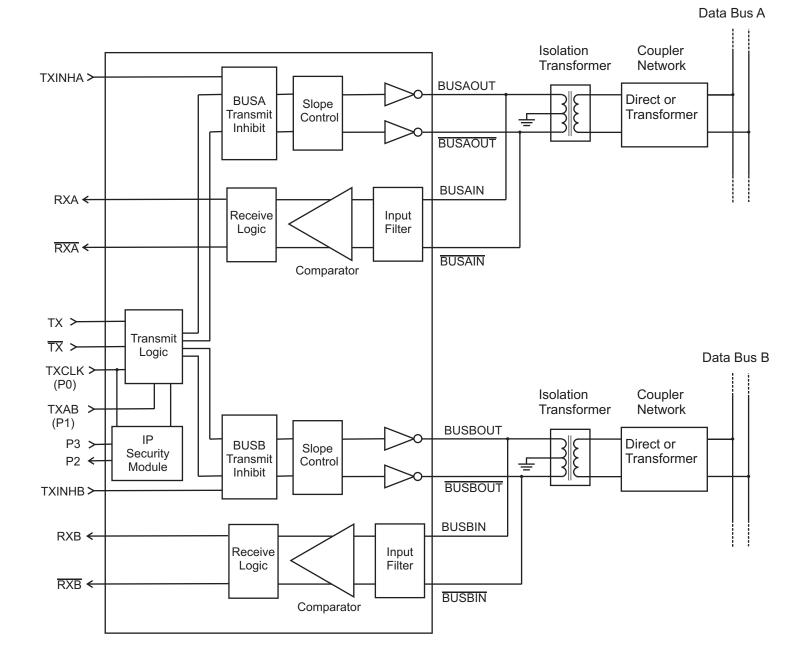


Figure 1. Block Diagram

FUNCTIONAL DESCRIPTION

The HI-1587 dual MIL-STD-1553 bus transceiver contains a differential voltage source driver and a differential analog bus receiver for each bus. It is designed for applications using a MIL-STD-1553B communications bus. The device generates a trapezoidal output waveform during transmission.

TRANSMITTER

Data input to the HI-1587 transmitter is a pair of complementary CMOS inputs TX and TX. The transmission bus (BUSA or BUSB) is selected by asserting the TXAB (P1) pin (TXAB = 0 for Bus A, TXAB = 1 for Bus B). The transmitter accepts Manchester II bi-phase data and converts it to differential analog voltages on BUSAOUT and BUSAOUT, or BUSBOUT and BUSBOUT. The transceiver outputs are either direct- or transformer-coupled to the MIL-STD-1553 data bus. Both coupling methods produce a nominal voltage on the bus of 7.5 Volts peak to peak.

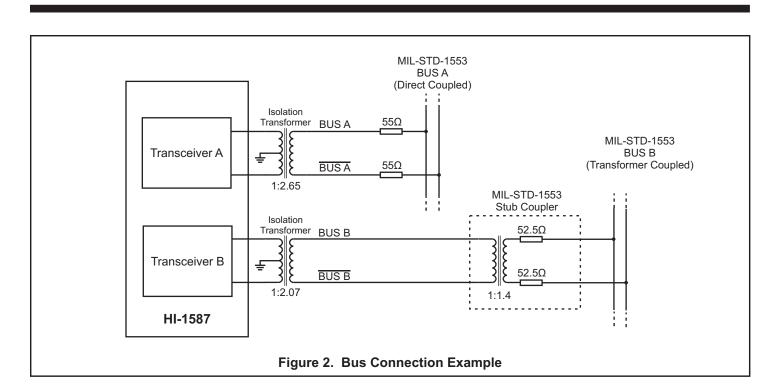
The transmitter is automatically inhibited and placed in the high impedance state when TX and \overline{TX} are both driven to the same logic state. A bus transmitter is also forced to the high impedance state when logic "1" is applied at the TXINHA (or TXINHB) transmit inhibit input, regardless of the TX and \overline{TX} input condition.

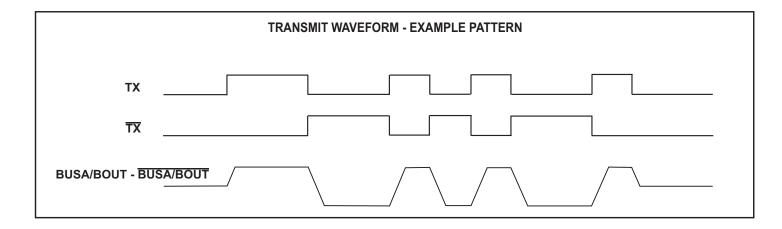
RECEIVER

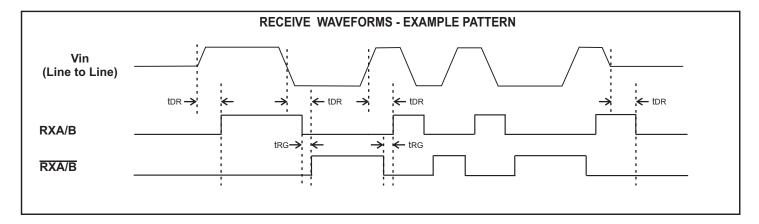
The receiver accepts bi-phase differential analog signals from the MIL-STD-1553 bus through the same direct- or transformer-coupled interface at the BUSAIN and BUSAIN (or BUSBIN and BUSBIN) pins. The receiver differential input stage drives a filter and threshold comparator to produce CMOS data at the RXA and RXA (or RXB and RXB) output pins.

MIL-STD-1553 BUS INTERFACE

A direct-coupled interface (see Figure 2) uses a 1:2.65 turnsratio isolation transformer and two 55 ohm isolation resistors between the transformer and the bus. The primary center-tap of the isolation transformer must be connected to GND.


In a transformer-coupled interface (see Figure 2), the transceiver is connected to a 1:2.07 turns-ratio isolation transformer which is connected to the main bus using a 1:1.4 turns-ratio coupling transformer. The transformer coupled method also requires two coupling resistors equal to 75% of the bus characteristic impedance (Zo) between the coupling transformer and the bus.


Figure 3 and Figure 4 show test circuits for measuring electrical characteristics of both direct- and transformer-coupled interfaces respectively. (See electrical characteristics on the following pages).


IP Security Module

The HI-1587 features an integrated IP security module, eliminating the need for an external dongle chip commonly used by other IP solutions. The security module is necessary to enable Holt's proprietary MIL-STD-1553 protocol IP. A unique key is factory programmed for each transceiver. Upon reset, an instantiated FPGA IP will send a security handshake request to the transceiver, which must respond appropriately to enable the IP.

HI-1587

HOLT INTEGRATED CIRCUITS 5

ABSOLUTE MAXIMUM RATINGS

Supply voltage (VDD)	-0.3 V to +5 V		
Logic input voltage range	-0.3 V dc to +3.6 V		
Voltage at BUSA/B or BUSA/B pins	+/-7 V		
Vddio - Vlogic	0.5V		
Driver peak output current	+1.0 A		
Power dissipation at 25°C	1.0 W		
Reflow Solder Temperature	260°C		
Junction Temperature	175°C		
Storage Temperature	-65°C to +150°C		

RECOMMENDED OPERATING CONDITIONS

Supply Voltages

$\begin{array}{l} \mbox{Vdd} &$	
Temperature Range	

Industrial	40°C to +85°C
Hi-Temp	-55°C to +125°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

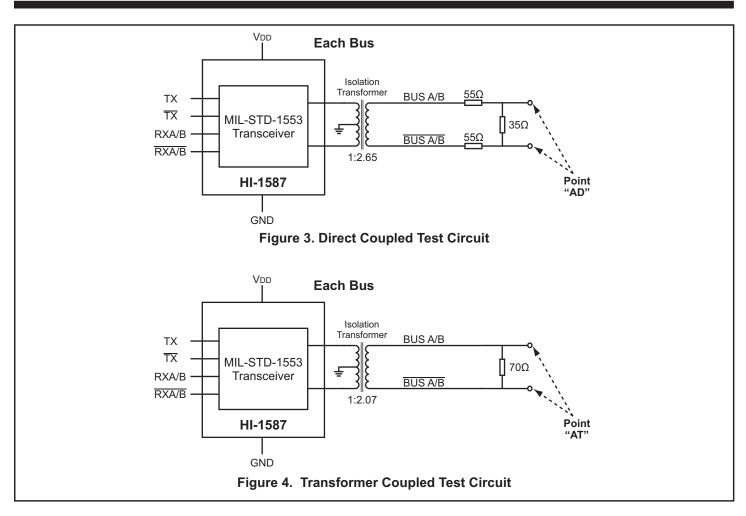
DC ELECTRICAL CHARACTERISTICS

VDD = 3.14 V to 3.46V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNITS
Transceiver Supply Voltage	Vdd		3.14	3.30	3.46	V
	ICC1	Not Transmitting		30	40	mA
Total Supply Current	Icc2	Transmit one bus @ 50% duty cycle		300	320	mA
	Іссз	Transmit one bus @ 100% duty cycle		625	675	mA
Power Dissipation	PD1	Not Transmitting		0.1	0.14	W
	PD ²	Transmit one bus @ 100% duty cycle		0.85	0.98	W
Logic Supply Voltage	VLOGIC		3.0	3.30	3.6	V
Logic Supply Current	ILOGIC				5.0	mA
		1.8V Digital I/O	1.65	1.8	1.95	V
Digital I/O Supply Voltage	Vddio	2.5V Digital I/O	2.3	2.5	2.7	V
		3.3V Digital I/O	3.0	3.3	3.6	V
Digital I/O Supply Current	Ivddio				15	mA
Min. Input Voltage (High)	Viн	Digital inputs, VDDIO = VDD = 3.3V	70%			VDD
Max. Input Voltage (Low)	VIL	Digital inputs, VDDIO = VDD = 3.3V			30%	VDD
Min. Output Voltage (High)	Vон	louτ = -1.0mA, Digital outputs	90%			VDD
		VDDIO = VDD = 3.3V				
Max. Output Voltage (Low)	Vol	louτ = 1.0mA, Digital outputs			10%	VDD
		VDDIO = VDD = 3.3V				
Min. Input Voltage (High)	Viн	Digital inputs, VDDIO = 2.5V, VDD = 3.3V	1.7			V
Max. Input Voltage (Low)	VIL	Digital inputs, VDDIO = 2.5V, VDD = 3.3V			0.7	V
Min. Output Voltage (High)	Voн	louт = -1.0mA, Digital outputs	2.3			V
		Vddio = 2.5V, Vdd = 3.3V				
Max. Output Voltage (Low)	Vol	louτ = 1.0mA, Digital outputs			0.2	V
		Vddio = 2.5V, Vdd = 3.3V				

DC ELECTRICAL CHARACTERISTICS (cont.)

VDD = 3.14 V to 3.46V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).


PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Min. Input Voltage (High)	Viн	Digital inputs, VDDIO = 1.8V, VDD = 3.3V	1.17			V
Max. Input Voltage (Low)	VIL	Digital inputs, VDDIO = 1.8V, VDD = 3.3V			0.63	V
Min. Output Voltage (High)	Vон	Iouτ = -1.0mA, Digital outputs VDDIO = 1.8V, VDD = 3.3V	1.35			V
Max. Output Voltage (Low)	Vol	Iouτ = 1.0mA, Digital outputs VDDIO = 1.8V, VDD = 3.3V			0.45	V
Min. Input Current (High)	Ін	All Digital inputs, Internal Pull-Downs	20	30	50	μA
Max. Input Current (Low)	١L	All Digital inputs	-20			μA
RECEIVER(Measured at Point "AD" in Figure 3 u	inless otherv	vise specified)			1	
Input resistance	Rin	Differential (at chip pins)	5			kOhm
Input capacitance	Cin	Differential			5	pF
Common mode rejection ratio	CMRR		40			dB
Input common mode voltage	Vicм		-10.0		10.0	V-pk
Threshold Voltage - Direct-coupled Detect	Vthd	1 MHz Sine Wave Measured at Point "Ab" in Figure 3 RXA/B, RXA/B pulse width >70 ns	1.15			Vp-p
No Detect	Vthnd	No pulse at RXA/B, RXA/B			0.28	Vp-p
Theshold Voltage - Transformer-coupled Detect	Vthd	1 MHz Sine Wave Measured at Point "Ατ" in Figure 4 RXA/B, RXA/B pulse width >70 ns	0.86			Vp-p
No Detect	Vthnd	No pulse at RXA/B, RXA/B			0.20	Vp-p
TRANSMITTER(Measured at Point "AD" in Figure	e 3 unless o	therwise specified)				
Output Voltage Direct coupled	Vout	35 ohm load (Measured at Point "A b " in Figure 3)	6.0		9.0	Vp-p
Transformer coupled	Vout	70 ohm load (Measured at Point "At" in Figure 4)	20.0		27.0	Vp-p
Output Noise	Von	Differential, inhibited			10.0	mVp-p
Output Dynamic Offset Voltage Direct coupled	Vdyn	35 ohm load (Measured at Point "A o " in Figure 3)	-90		90	mV
Transformer coupled	Vdyn	70 ohm load (Measured at Point "Ατ" in Figure 4)	-250		250	mV
Output Capacitance	Соит	1 MHz sine wave			15	pF

AC ELECTRICAL CHARACTERISTICS

VDD = 3.14 V to 3.46 V, GND = 0V, TA =Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER (Measured	l at Point "A⊤" i	n Figure 4 unless otherwise specified)			1	
Receiver Delay	tDR	From input zero crossing to RXA/B			450	ns
		or RXA/B				
Receiver gap time	tRG	Spacing between RXA/B	50		365	ns
ENPEXT = 0		and RXA/B pulses.				
		1 MHz sine wave applied at point "AT" Figure 4,				
		amplitude range 0.86 Vp-p to 27.0Vp-p				
Receiver gap time	tRG	Spacing between RXA/B	50		200	ns
ENPEXT = 1		and RXA/B pulses.				
		1 MHz sine wave applied at point "AT" Figure 4,				
		amplitude range 0.86 Vp-p to 27.0Vp-p				
Receiver Enable Delay	tren	From RXENA/B rising or falling edge to			40	ns
		RXA/B or RXA/B			40	110
TRANSMITTER (Measured	at Point "AT"	in Figure 4)				
Driver Delay	tdt	TX, TX to BUSA/BOUT, BUSA/BOUT			160	ns
Rise time	tr	70 ohm load	100	150	300	ns
Fall Time	tf	70 ohm load	100	150	300	ns
Inhibit Delay	tDI-Н	Inhibited output			100	ns
	tDI-L	Active output			150	ns
Tx/Tx data set-up time to tTx-S CLK rising edge		ENCLK pin enabled (high)	10			ns
Tx/Tx data hold time after CLK rising edge	tтx-н	ENCLK pin enabled (high)	10			ns

HI-1587

HEAT SINK

The HI-1587PCI/T/M uses a plastic chip-scale package (QFN). These packages include a metal heat sink located on the bottom surface of the device. This heat sink should be soldered down to the printed circuit board ground plane or left floating.

APPLICATIONS NOTE

Holt Applications Note AN-500 provides circuit design notes regarding the use of Holt's family of MIL-STD-1553 transceivers. Layout considerations, as well as recommended interface and protection components are included.

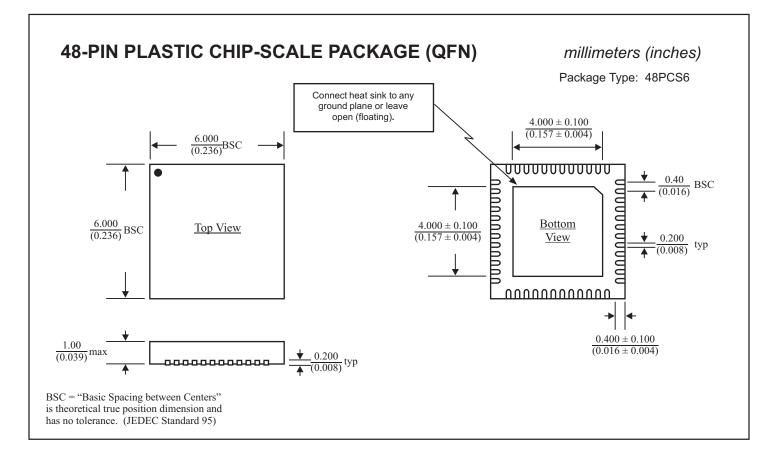
HI-1587

ORDERING INFORMATION

			PART #	DEV FUN	ICE CTIONALITY						
			А	Pairs	with HI-6300-xxxA –	(Holt RT IP C	Core)				
			B Pairs with HI-6300-xxxB – (Holt RT/MT IP Core)								
			С	C Pairs with HI-6300-xxxC – (Holt BC/RT IP Core)							
			D	Pairs	with HI-6300-xxxD –	(Holt BC/RT/	MT IP Core)			
			E	Pairs	with HI-6300-xxxE –	(Holt DO-254	1 DAL A Cor	npliant RT IP Core)			
			F	Pairs	with HI-6300-xxxF –	(Holt DO-254	DAL A Con	npliant RT/MT IP Core)			
			G	Pairs	with HI-6300-xxxG -	(Holt DO-254	4 DAL A Cor	mpliant BC/RT IP Core)			
			Н	Pairs	with HI-6300-xxxH –	(Holt DO-254	4 DAL A Cor	mpliant BC/RT/MT IP Core)			
			CUST	ГОМЕ	R ID						
			Uniqu	ıe 3-d	igit customer project o	code, e.g. 001	, 002, 003,	etc.			
								1			
			PAR	Г#	LEAD FINISH						
			F		NiPdAu (Pb-free RoHS compliant)						
								l			
L			PAR	Т#	TEMPERATURE RANGE	FLOW	BURN IN				
					-40°C TO +85°C	I	No				
			т		-55°C TO +125°C	Т	No				
	M				-55°C TO +125°C	М	Yes				
			PAR	Т#	PACKAGE DESCRIPTION						
			PC 48 PIN PLASTIC CHIP-SCALE PACKAGE QFN (48PCS6)								

RECOMMENDED TRANSFORMERS

The HI-1587 transceiver has been characterized for compliance with the electrical requirements of MIL-STD-1553 when used with the following transformers. Holt


recommends Premier Magnetics parts as offering the best combination of electrical performance, low cost and small footprint.

MANUFACTURER	PART NUMBER	APPLICATION	TURNS RATIO	DIMENSIONS
Premier Magnetics	PM-DB2779	Isolation	Dual 1:2.65 / 1:2.07	.675 x .400 x .185 inches
Premier Magnetics	PM-DB2702	Stub coupling	1:1.4	.625 x .625 x .250 inches

REVISION HISTORY

Document	Rev.	Date	Description of Change
DS1587	New	04/05/18	Initial Release.
	А	04/16/18	Update description of IP security module.
	В	04/23/18	Update ordering information.
	С	07/03/18	Correct typo in ordering information.
	D	02/20/19	Update note on QFN package heatsink connection.
	Е	04/01/19	Add VDDIO-VLOGIC = 0.5V to Absolute Maximum Ratings. Add voltage and current parameters for all power supplies.
	F	01/10/19	Change lead finish to NiPdAu. Change logic supply limits to 3.0V to 3.6V.

